中国真菌学杂志 2021, Vol. 16 Issue (6): 414-419.
综述 上一篇
康烨1, 王瑞娜2, 阎澜2
收稿日期:
2020-11-09
发布日期:
2021-12-29
通讯作者:
阎澜,E-mail:ylan20001228@sina.com
E-mail:ylan20001228@sina.com
作者简介:
康烨,女(汉族),硕士,主管药师. E-mail: liushixun0822@163.com
基金资助:
Received:
2020-11-09
Published:
2021-12-29
中图分类号:
康烨, 王瑞娜, 阎澜. 抗真菌药物潜在靶点及化合物研究进展[J]. 中国真菌学杂志, 2021, 16(6): 414-419.
[1] HOPKE A, BROWN A J P, HALL R A, et al. Dynamic fungal cell wall architecture in stress adaptation and immune evasion[J]. Trends Microbiol, 2018,26(4):284-295. [2] CHANG Y L, YU S J, HEITMAN J, et al. New facets of antifungal therapy[J]. Virulence,2017,8(2):222-236. [3] CAMPOY S, ADRIO J L. Antifungals[J]. Biochem Pharmacol, 2017,133:86-96. [4] SU H, HAN L, DING N, et al. Bafilomycin C1 exert antifungal effect through disturbing sterol biosynthesis in Candida albicans[J]. J Antibiot (Tokyo), 2018,71(4):467-476. [5] GOW N A R, LATGE J P, MUNRO C A. The fungal cell wall: structure, biosynthesis, and function[J]. Microbiol Spectr,2017, 5(3). doi: 10.1128/microbiolspec.FUNK-0035-2016. [6] GEOGHEGAN I, STEINBERG G, GURR S. The role of the fungal cell wall in the infection of plants[J]. Trends Microbiol,2017,25(12):957-967. [7] SCHELL W A, JONES A M, BORROTO-ESODA K, et al. Antifungal activity of SCY-078 and standard antifungal agents against 178 clinical isolates of resistant and susceptible Candida species[J]. Antimicrob Agents Chemother, 2017,61(11):e01102-17. [8] MUTZ M, ROEMER T. The GPI anchor pathway: a promising antifungal target[J]. Future Med Chem, 2016,8(12):1387-1391. [9] SHAW K J, SCHELL W A, COVEL J, et al. In vitro and in vivo evaluation of APX001A/APX001 and other Gwt1 Inhibitors against cryptococcus[J]. Antimicrob Agents Chemother, 2018, 62(8):e00523-18. YADAV U, KHAN M A. Targeting the GPI biosynthetic pathway[J]. Pathog Glob Health, 2018,112(3):115-122. WIEDERHOLD N P, NAJVAR L K, SHAW K J, et al. Efficacy of delayed therapy with fosmanogepix (APX001) in a murine model of Candida auris invasive candidiasis[J]. Antimicrob Agents Chemother,2019,63(11):e01120-19. ZHAO Y, LEE M H, PADERU P, et al. Significantly improved pharmacokinetics enhances in vivo efficacy of APX001 against echinocandin- and multidrug-resistant Candida isolates in a mouse model of invasive candidiasis[J]. Antimicrob Agents Chemother,2018,62(10):e00425-18. PFALLER M A, HUBAND M D, FLAMM R K, et al.In vitro activity of APX001A (Manogepix) and comparator agents against 1,706 fungal Isolates collected during an International surveillance program in 2017[J]. Antimicrob Agents Chemother,2019,63(8):e00840-19. GEBREMARIAM T, ALKHAZRAJI S, ALQARIHI A, et al. Fosmanogepix (APX001) is effective in the treatment of pulmonary murine mucormycosis due to Rhizopus arrhizus[J]. Antimicrob Agents Chemother,2020,64(6):e00178-20. MALINA C, LARSSON C, NIELSEN J. Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology[J]. FEMS Yeast Res,2018,18(5).DOI: 10.1093/femsyr/foy040. LI D, CALDERONE R. Exploiting mitochondria as targets for the development of new antifungals[J]. Virulence,2017,8(2):159-168. CHANG W Q, WU X Z, CHENG A X, et al. Retigeric acid B exerts antifungal effect through enhanced reactive oxygen species and decreased cAMP[J]. Biochim Biophys Acta,2011,1810(5):569-576. YUN D G, LEE D G. Silymarin exerts antifungal effects via membrane-targeted mode of action by increasing permeability and inducing oxidative stress[J]. Biochim Biophys Acta Biomembr,2017,1859(3):467-474. NAZZARO F, FRATIANNI F, COPPOLA R, et al. Essential oils and antifungal activity[J]. Pharmaceuticals (Basel),2017,10(4):86. SAIBABU V, SINGH S, ANSARI M A, et al. Insights into the intracellular mechanisms of citronellal in Candida albicans: implications for reactive oxygen species-mediated necrosis, mitochondrial dysfunction, and DNA damage[J]. Rev Soc Bras Med Trop, 2017,50(4):524-529. YURKIV M, KURYLENKO O, VASYLYSHYN R, et al. Gene of the transcriptional activator MET4 is involved in regulation of glutathione biosynthesis in the methylotrophic yeast Ogataea (Hansenula) polymorpha[J]. FEMS Yeast Res,2018,18(2). DOI: 10.1093/femsyr/foy004. NISHIKAWA H, FUKUDA Y, MITSUYAMA J, et al. In vitro and in vivo antifungal activities of T-2307, a novel arylamidine, against Cryptococcus gattii: an emerging fungal pathogen[J]. J Antimicrob Chemother,2017,72(6):1709-1713. YAMASHITA K, MIYAZAKI T, FUKUDA Y, et al. The novel arylamidine T-2307 selectively disrupts yeast mitochondrial function by inhibiting respiratory chain complexes[J]. Antimicrob Agents Chemother, 2019, 63(8): e00374-19. NISHIKAWA H, SAKAGAMI T, YAMADA E, et al. T-2307, a novel arylamidine, is transported into Candida albicans by a high-affinity spermine and spermidine carrier regulated by Agp2[J]. J Antimicrob Chemother,2016,71(7):1845-1855. YAMASHITA K, MIYAZAKI T, FUKUDA Y, et al. The novel arylamidine T-2307 selectively disrupts yeast mitochondrial function by inhibiting respiratory chain complexes[J]. Antimicrob Agents Chemother, 2019, 63(8): e00374-19. WIEDERHOLD N P, NAJVAR L K, FOTHERGILL A W, et al. The novel arylamidine T-2307 demonstrates in vitro and in vivo activity against echinocandin-resistant Candida glabrata[J]. J Antimicrob Chemother, 2016, 71(3): 692-695. NISHIKAWA H, FUKUAD Y, MITSUYAMA J, et al. In vitro and in vivo antifungal activities of T-2307, a novel arylamidine, against Cryptococcus gattii: an emerging fungal pathogen[J]. J Antimicrob Chemother, 2017, 72(6): 1709-1713. DUNN M F, RAMIREZ-TRUJILLO J A, HERNANDEZ-LUCAS I. Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis[J]. Microbiology (Reading),2009,155(Pt 10):3166-3175. LORENZ M C, FINK G R. Life and death in a macrophage: role of the glyoxylate cycle in virulence[J]. Eukaryot Cell,2002,1(5):657-662. KIM H, HWANG J Y, SHIN J, et al. Inhibitory effects of diketopiperazines from marine-derived streptomyces puniceus on the isocitrate lyase of Candida albicans[J]. Molecules,2019,24(11):2111. REVIE N M, IYER K R, ROBBINS N, et al. Antifungal drug resistance: evolution, mechanisms and impact[J]. Curr Opin Microbiol,2018,45:70-76. ROBBINS N, CAPLAN T, COWEN L E. Molecular evolution of antifungal drug resistance[J]. Annu Rev Microbiol,2017,71:753-775. ZHANG J, SILAO F G, BIGOL U G, et al. Calcineurin is required for pseudohyphal growth, virulence, and drug resistance in Candida lusitaniae[J]. PLoS One,2012,7(8):e44192. LIU S, HOU Y, LIU W,et al. Components of the calcium-calcineurin signaling pathway in fungal cells and their potential as antifungal targets[J]. Eukaryot Cell,2015,14(4):324-334. LEE Y, LEE K T, LEE S J, et al. In vitro and in vivo assessment of FK506 analogs as novel antifungal drug candidates[J]. Antimicrob Agents Chemother,2018,62(11):e01627-18. JUVVADI P R, FOX D, 3RD, et al. Harnessing calcineurin-FK506-FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents[J]. Nat Commun,2019,10(1):4275. JUVVADI P R, LEE S C, HEITMAN J, et al. Calcineurin in fungal virulence and drug resistance: Prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach[J].Virulence, 2017,8(2):186-197. LAFAYETTE S L, COLLINS C, ZAAS A K,et al. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90[J]. PLoS Pathog,2010,6(8):e1001069. COWEN L E. The fungal Achilles' heel: targeting Hsp90 to cripple fungal pathogens[J]. Curr Opin Microbiol,2013,16(4):377-384. WHITESELL L, ROBBINS N, HUANG D S, et al. Structural basis for species-selective targeting of Hsp90 in a pathogenic fungus[J]. Nat Commun,2019,10(1):402. TORRES-GARCIA S, YASEEN I, SHUKLA M, et al. Epigenetic gene silencing by heterochromatin primes fungal resistance[J]. Nature,2020,585(7825):453-458. NARITA T, WEINERT B T, CHOUDHARY C. Functions and mechanisms of non-histone protein acetylation[J]. Nat Rev Mol Cell Biol, 2019, 20(3): 156-174. LI Y, LI H, SUI M, et al. Fungal acetylome comparative analysis identifies an essential role of acetylation in human fungal pathogen virulence[J]. Commun Biol, 2019, 2: 154. XU X, LIU T, YANG J, et al. The First whole-cell proteome-and lysine-acetylome-based comparison between trichophyton rubrum conidial and mycelial stages[J]. J Proteome Res,2018,17(4):1436-1451. WANG G, GUO L, LIANG W, et al. Systematic analysis of the lysine acetylome reveals diverse functions of lysine acetylation in the oleaginous yeast Yarrowia lipolytica[J]. AMB Express,2017,7(1):94. ZHOU T, CHUNG Y H, CHEN J, et al. Site-specific Identification of lysine acetylation stoichiometries in mammalian cells[J]. J Proteome Res,2016,15(3):1103-1113. REN J, SANG Y, LU J, et al. Protein acetylation and its role in bacterial virulence[J]. Trends Microbiol,2017,25(9):768-779. PERFECT J R.The antifungal pipeline: a reality check[J]. Nat Rev Drug Discov, 2017, 16(9): 603-616. VAN DAELE R, SPRIET I, WAUTERS J, et al. Antifungal drugs: what brings the future [J]. Med Mycol,2019,57(Suppl 3):S328-S343. LAMOTH F, JUVVADI P R, STEINBACH W J. Histone deacetylase inhibition as an alternative strategy against invasive aspergillosis[J]. Front Microbiol,2015,6:96. BRANDAO F, ESHER S K, OST K S, et al. HDAC genes play distinct and redundant roles in Cryptococcus neoformans virulence[J]. Sci Rep,2018,8(1):5209. PFALLER M A, RHOMBERG P R, MESSER S A, et al. In vitro activity of a Hos2 deacetylase inhibitor, MGCD290, in combination with echinocandins against echinocandin-resistant Candida species[J]. Diagn Microbiol Infect Dis,2015,81(4):259-263. MIETTON F, FERRI E, CHAMPLEBOUX M, et al. Selective BET bromodomain inhibition as an antifungal therapeutic strategy[J]. Nat Commun,2017,8:15482. SAHNI J M, KERI R A.Targeting bromodomain and extraterminal proteins in breast cancer[J]. Pharmacol Res,2018,129:156-176. PADMANABHAN B, MATHUR S, MANJULA R, et al. Bromodomain and extra-terminal (BET) family proteins: new therapeutic targets in major diseases[J].J Biosci,2016,41(2):295-311. LEAL A S, WILLIAMS C R, ROYCE D B, et al. Bromodomain inhibitors, JQ1 and I-BET 762, as potential therapies for pancreatic cancer[J]. Cancer Lett, 2017, 394: 76-87. RAMADOSS M, MAHADEVAN V. Targeting the cancer epigenome: synergistic therapy with bromodomain inhibitors[J]. Drug Discov Today,2018,23(1):76-89. SUTAK R, LESUISSE E, TACHEZY J, et al. Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence[J]. Trends Microbiol,2008,16(6):261-268. NAKAMURA I, YOSHIMURA S, MASAKI T, et al. ASP2397: a novel antifungal agent produced by Acremonium persicinum MF-347833[J]. J Antibiot (Tokyo),2017,70(1):45-51. DIETL A M, MISSLINGER M, AGUIAR M M, et al. The siderophore transporter Sit1 determines susceptibility to the antifungal VL-2397[J]. Antimicrob Agents Chemother,2019,63(10):e00807-19. NAKAMURAL I, OHSUMI K, TAKEDA S, et al. ASP2397 is a novel natural compound that exhibits rapid and potent fungicidal activity against Aspergillus species through a specific transporter[J]. Antimicrob Agents Chemother,2019,63(10):e02689-18. KOVANDA L L, SULLIVAN S M, SMITH L R, et al. Population pharmacokinetic modeling of VL-2397, a novel systemic antifungal agent: analysis of a single-and multiple-ascending-dose study in healthy subjects[J]. Antimicrob Agents Chemother,2019,63(6):e00163-19. RICHARDSON J P, MOGAVERO S, MOYES D L, et al. Processing of Candida albicans Ece1p is critical for candidalysin maturation and fungal virulence[J]. mBio,2018,9(1):e02178-17. KASPER L, KONIG A, KOENIG P A, et al. The fungal peptide toxin candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes[J]. Nat Commun,2018,9(1):4260. KONIG A, HUBE B, KASPER L. The dual function of the fungal toxin candidalysin during Candida albicans-macrophage interaction and virulence[J]. Toxins (Basel),2020,12(8):469. EGBE N E, DORNELLES T O, PAGET C M, et al.Farnesol inhibits translation to limit growth and filamentation in C. albicans and S. cerevisiae[J]. Microb Cell,2017,4(9):294-304. KOVACS R, BOZO A, GESZTELYI R, et al. Effect of caspofungin and micafungin in combination with farnesol against Candida parapsilosis biofilms[J]. Int J Antimicrob Agents,2016,47(4):304-310. [68] DIZOVA S, BUJADKOVA H. Properties and role of the quorum sensing molecule farnesol in relation to the yeast Candida albicans[J]. Pharmazie,2017,72(6):307-312. |
[1] | 徐灵玲, 曾章锐, 丁银环, 杨葵. 川南地区侵袭性念珠菌感染流行病学及耐药性分析[J]. 中国真菌学杂志, 2021, 16(5): 319-325. |
[2] | 谭静文, 高志琴, 杨虹, 杨连娟. 国产泊沙康唑对生殖器来源念珠菌的体外药物敏感性研究[J]. 中国真菌学杂志, 2021, 16(5): 326-329,334. |
[3] | 张欠欠, 罗传玉, 陈嘉琪, 封小川. 白念珠菌感染现状及抗真菌药物研究进展[J]. 中国真菌学杂志, 2021, 16(5): 356-360. |
[4] | 刘慧敏, 马彦. 烟曲霉极性生长相关基因研究进展[J]. 中国真菌学杂志, 2021, 16(4): 279-283. |
[5] | 谢韵, 张丽娟, 帕丽达·阿布利孜. 分离自1例慢性阻塞性肺疾病患者的Aspergillus lentulus在蜡螟模型上的毒力初探[J]. 中国真菌学杂志, 2021, 16(3): 155-160. |
[6] | 李炳坤, 黄春阳, 李秀楹, 郑艳青, 潘开素, 廖万清, 曹存巍. 中国广西地区格特隐球菌菌种复合体的基因型分析[J]. 中国真菌学杂志, 2021, 16(2): 84-89. |
[7] | 李颖, 王贺, 张戈, 刘文静, 徐英春. Sensititre YeastOne显色药敏板与微量肉汤稀释法检测曲霉体外抗真菌药物敏感性的一致性研究[J]. 中国真菌学杂志, 2020, 15(4): 197-201. |
[8] | 黄春阳, 潘开素, 李秀楹, 曹存巍, 郑艳青. Calcineurin A基因对马尔尼菲篮状菌致病力的影响[J]. 中国真菌学杂志, 2020, 15(3): 138-144. |
[9] | 郑晓丽, 陈官芝, 刘维达. 抗真菌药物的免疫调节作用[J]. 中国真菌学杂志, 2020, 15(3): 179-182. |
[10] | 邱熙然, 陈思敏, 侯炜彤, 张玉, 郭诗雨, 姜远英, 安毛毛. 白念珠菌侵袭宿主毒力因子研究进展[J]. 中国真菌学杂志, 2020, 15(3): 183-188. |
[11] | 赵德军, 杨淋. 贵州省某区域女性阴道念珠菌的菌种分布及耐药性分析[J]. 中国真菌学杂志, 2020, 15(2): 83-87. |
[12] | 曹雪, 马彦. 烟曲霉极性生长及毒力相关基因、转录因子及相关通路的研究进展[J]. 中国真菌学杂志, 2020, 15(2): 121-124. |
[13] | 范欣, 郭莉娜, 杨洋, 张戈, 段思蒙, 张京家, 徐英春, 杨春霞. 侵袭性感染酵母菌流行病学及耐药性分析[J]. 中国真菌学杂志, 2020, 15(1): 10-14. |
[14] | 张静云, 佘晓东, 刘维达. 白念珠菌糖代谢与毒力[J]. 中国真菌学杂志, 2020, 15(1): 61-64. |
[15] | 刘文静, 孙宏莉, 张小江, 杨文航, 肖盟, 王瑶, 杨启文, 窦红涛, 王贺, 赵颖, 郭莉娜, 刘亚丽, 张丽, 朱任媛, 徐英春. 2014~2018年北京协和医院酵母菌血流感染菌种分布和抗真菌药物敏感性分析[J]. 中国真菌学杂志, 2019, 14(6): 357-361. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||