中国真菌学杂志 2021, Vol. 16 Issue (5): 356-360.
综述 上一篇
张欠欠, 罗传玉, 陈嘉琪, 封小川
收稿日期:
2020-10-21
发布日期:
2021-10-28
作者简介:
张欠欠,女(汉族),硕士,副教授,硕士研究生导师.E-mail:zhangqianyd@163.com
基金资助:
Received:
2020-10-21
Published:
2021-10-28
中图分类号:
张欠欠, 罗传玉, 陈嘉琪, 封小川. 白念珠菌感染现状及抗真菌药物研究进展[J]. 中国真菌学杂志, 2021, 16(5): 356-360.
[1] Xiao M, Sun ZY, Kang M, et al. Five-year national surveillance of invasive candidiasis:species distribution and azole susceptibility from the China Hospital Invasive Fungal Surveillance NET(CHIF-NET) Study[J]. J Clin Microbiol, 2018, 56(7):e00577-18. [2] Pappas PG, Lionakis MS, Arendrup MC.Invasive candidiasis[J].Nat Rev Dis Primers, 2018, 11(4):18026. [3] Kullberg BJ, Arendrup MC.Invasive candidiasis[J]. New Engl J Med, 2016, 374(8):794-795. [4] Fu J, Ding Y, Wei B, et al. Epidemiology of Candida albicans and non-C.albicans of neonatal candidemia at a tertiary care hospital in western China[J]. BMC Infect Dis, 2017, 17(1):329. [5] Antinori S, Milazzo L, Sollima S, et al. Candidemia and invasive candidiasis in adults:a narrative review[J]. Eur J Inter Med, 2016, 34:21-28. [6] Udawatte NS, Kang SW, Wang Y, et al.Predictivenephrotoxicity profiling of a novel antifungal small molecule in comparison to amphotericin B and voriconazole[J].Front Pharmacol, 2020, 11:511. [7] Canela HMS, Cardoso B, Vitali LH, et al.Prevalence, virulence factors and antifungal susceptibility of Candida spp. isolated from bloodstream infections in a tertiary care hospital in Brazil[J].Mycoses, 2018, 61(1):11-21. [8] 邱熙然, 陈思敏, 侯炜彤, 等.白念珠菌侵袭宿主毒力因子研究进展[J].中国真菌学杂志, 2020, 15(3):183-188. [9] Vieira De Melo AP, Zuza-Alves DL, Da Silva-Rocha WP, et al.Virulence factors of Candida spp. obtained from blood cultures of patients with candidemia attended at tertiary hospitals in Northeast Brazil[J].J Mycol Med, 2019, 29(2):132-139. [10] Siopi M, Tarpatzi A, Kalogeropoulou E, et al.Epidemiologicaltrends of fungemia in Greece with a focus on candidemia during the recent financial crisis:a 10-year survey in a tertiary care academic hospital and review of literature[J]. Antimicrob Agents Ch, 2020, 64(3):e01516-19. [11] Warris A, Pana ZD, Oletto A, et al.Etiology andoutcome of candidemia in neonates and children in Europe:an 11-year multinational retrospective study[J].Pediatr Infect Dis J, 2020, 39(2):114-120. [12] Zeng Z, Tian G, Ding Y, et al.Epidemiology, antifungal susceptibility, risk factors and mortality of invasive candidiasis in neonates and children in a tertiary teaching hospital in Southwest China[J].Mycoses, 2020.DOI:10.1111/myc.13146. Online ahead of print. [13] Kanchanapiboon J, Kongsa U, Pattamadilok D, et al.Boesenbergia rotunda extract inhibits Candida albicans biofilm formation by pinostrobin and pinocembrin[J].J Ethnopharmacol, 2020, 261:113193.DOI:10.1016/j.jep.2020.113193. [14] 胡海锦.两性霉素B制剂的发展及临床应用[J].中国合理用药探索2020, 17(7):4-9. [15] 姜佳玉, 王汐文, 唐希远, 等.白念珠菌生物被膜治疗研究进展[J].中国抗生素杂志, 2019, 44(8):899-903. [16] Sobel JD, Sobel R.Current treatment options for vulvovaginal candidiasis caused by azole-resistant Candida species[J].Expert Opin Pharmacother, 2018, 19(9):971-977. [17] 尚盼盼, 王爱平.伊曲康唑临床应用的安全性分析[J].中国真菌学杂志, 2018, 13(6):376-379. [18] 范欣.中国多中心连续五年侵袭性感染念珠菌流行病学及唑类耐药机制研究[D].北京协和医学院, 2017. [19] Bhattacharjee P. Epidemiology and antifungal susceptibility of Candida species in a tertiary care hospital, Kolkata, India[J]. Curr Med Mycol, 2016, 2(2):20-27. [20] Jiang L, Zheng L, Sun KA, et al. In vitro and in vivo evaluation of the antifungal activity of fluoxetine combined with antifungals against Candida albicans biofilms and oral candidiasis[J].Biofouling, 2020, 36(5):537-548. [21] Lu X, Xu G, Chen L, et al.Assessment of micafungin loading dosage regimens against Candida spp. in ICU patients by Monte Carlo simulations[J].Eur J Clin Pharmacol, 2020, 76(5):695-702. [22] Pagniez F, Lebouvier N, Na YM, et al.Biological exploration of a novel 1, 2, 4-triazole-indole hybrid molecule as antifungal agent[J].J Enzyme Inhib Med Chem, 2020, 35(1):398-403. [23] 韩晓燕, 宋亚丽, 白埔, 等.抗真菌药物的系统分类、耐药机制及新药研发进展[J].中国现代应用药学, 2019, 36(11):1430-1436. [24] Papp C, Kocsis K, Tth R, et al. Echinocandin-induced microevolution of Candida parapsilosis influences virulence and abiotic stress tolerance[J].mSphere, 2018, 3(6):e00547-e00518. [25] Hou X, Healey KR, Shor E, et al. Novel FKS1 and FKS2 modifications in a high-level echinocandin resistant clinical isolate of Candida glabrata[J].Emerg Microbes Infect, 2019, 8(1):1619-1625. [26] Toda M, Williams SR, Berkow EL, et al. Population-based active surveillance forculture-confirmed candidemia four sites, United States, 2012-2016[J].Mmwr-morbid Mortal W, 2019, 68(8):1-15. [27] Fulle RJ, Dingle TC, Bull A, et al.Species distribution and antifungal susceptibility of invasive Candida isolates from Canadian hospitals:results of the CANWARD 2011-16 study[J].J Antimicrob Chemother, 2019, 74(Suppl 4):S48-S54. [28] Wang H, Xu YC, Hsueh PR. Epidemiology of candidemia and antifungal susceptibility in invasive Candida species in the Asia-Pacific region[J].Future Microbiol, 2016, 11:1461-1477. DOI:10.2217/fmb-2016-0099. [29] Boan P, Gardam D.Epidemiology and antifungal susceptibility patterns of candidemia from a tertiary centre in Western Australia[J].J Chemother, 2019, 31(3):137-140. [30] Warrilow AGS, Martel CM, Parker JE, et al.The clinical Candida te VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme[J]. Antimicrob Agents Ch, 2014, 58(12):7121-7127. [31] Garvey EP, Hoekstra WJ, Schotzinger RJ, et al. Efficacy of the clinical agent VT-1161 against fluconazole-sensitive and resistant Candida albicans in a murine model of vaginal candidiasis[J]. Antimicrob Agents Ch, 2015, 59(9):5567-5573. [32] Schell WA, Jones AM, Garvey EP.et al.Fungal CYP 51 inhibitors VT-1161 and VT-1129 exhibit strong in vitro activity against Candida glabrata and C.krusei isolates clinically resistant to azole and echinocandin antifungal compounds[J]. Antimicrob Agents Ch, 2017, 61(3):e01817-16. [33] Zhao Y, Perez WB, Jiménez-Ortigosa C, et al.CD101:a novel longacting echinocandin[J].Cell Microbiol, 2016, 18(9):1308-1316. [34] Ong V, Hough G, Schlosser M, et al.Preclinical evaluation of the stability, safety, and efficacy of CD101, a novel echinocabdin[J]. Antimicrob Agents Ch, 2016, 60(11):6872-6879. [35] Sandison T, Ong V, Lee J, et al.Safety and pharmacokinetics of CD101 IV, a novel echinocandin, in healthy adults[J]. Antimicrob Agents Ch, 2017, 61(2):e01627-16. [36] James KD, Laudeman CP, Malkar NB.et al.Structureactivity relationships of a series of echinocandins and the discovery of CD101, a highly stable and soluble echinocandin with distinctive pharmacokinetic properties[J]. Antimicrob Agents Ch, 2017, 61(2):e01541-16. [37] Gintjee TJ, Donnelley MA, Thompson GR, et al.Aspiring antifungals:review of current antifungal pipeline developments[J].J Fungi (Basel), 2020, 6(1):28. [38] Schell WA, Jones AM, Borroto-Esoda K, et al.Antifungal activity of SCY-078 and standard antifungal agents against 178 clinical isolates of resistant and susceptible Candida species[J]. Antimicrob Agents Ch, 2017, 61(11):e01102-17. [39] Pfaller MA.Messer SA, Rhomberg PR, et al.Differential activity of the oral glucan synthase inhibitor SCY-078 against wildtype and echinocandin resistant strains of Candida specisis[J]. Antimicrob Agents Ch, 2017, 61(8):e00161-17. [40] Wring SA, Randolph R, Park S, et al.Preclinical pharmacoki-netics and pharmacodynamic target of SCY-078, a first-in-class orally active antifungal glucan synthesis inhibitor, inmurine models of disseminated candidiasis[J]. Antimicrob Agents Ch, 2017, 61(4):e02068-16. [41] Hager CL, Larkin EL, Long L, et al. In vitro and in vivo evaluation of the antifungal activity of APX001A/APX001 against Candida auris[J]. BMC Microbiol, 2018, 62(3):e02319-e02317. [42] Caldara M, Marmiroli N.Known antimicrobials versus nortriptyline in Candida albicans:repositioning an old drug for new targets[J].Microorganisms, 2020, 8(5):742. [43] Truong T, Suriyanarayanan T, Zeng G, et al.Use of haploid model of Candida albicans to uncover mechanism of action of a novel antifungal agent[J].Front Cell Infect MI, 2018, 8:164. [44] Caldara M, Marmiroli N.Tricyclic antidepressants inhibit Candida albicans growth and biofilm formation[J].Int J Antimicrob Agents, 2018, 52(4):500-505. [45] You Z, Zhang C, Ran Y.The effects of clioquinol in morphogenesis, cell membrane and ion homeostasis in Candida albicans[J].BMC Microbiol, 2020, 20(1):165. [46] Wong SS, Kao RY, Yuen KY, et al.In vitro and in vivo activity of a novel antifungal small molecule against Candida infections[J].PLoS One, 2014, 9(1):e85836. [47] Rossi SA, De Oliveira HC, Agreda-Mellon D, et al.Identification of off-patent drugs that show synergism with amphotericin B or that present antifungal action against Cryptococcus neoformans and Candida spp[J]. Antimicrob Agents Ch, 2020, 64(4):e01921-19. [48] Kang HK, Kim C, Seo CH, et al. The therapeutic applications of antimicrobial peptides (AMPs):a patent review[J]. J Microbiol, 2017, 55(1):1-12. [49] Wirnsberger G, Zwolanek F, Asaoka T, et al. Inhibition of CBLB protects from lethal Candida albicans sepsis[J]. Nat Med, 2016, 22(8):915-923. [50] Do Nascimento Dias J, De Souza Silva C, De Araújo AR, et al.Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells[J].Sci Rep, 2020, 10(1):10327. [51] Gong Y, Li T, Yu C, et al.Candida albicans heat shock proteins and Hsps-associated signaling pathways as potential antifungal targets[J]. Front Cell Infect Microbiol, 2017, 7:520. DOI:10.3389/fcimb.2017.00520. [52] 扈东营, 邓宇晨, 方伟, 等.海洋抗真菌药物及抗真菌活性物质研究进展[J].世界临床药物, 2020, 41(10):818-821. |
[1] | 康烨, 王瑞娜, 阎澜. 抗真菌药物潜在靶点及化合物研究进展[J]. 中国真菌学杂志, 2021, 16(6): 414-419. |
[2] | 郭晓宇, 李小静. 白念珠菌生物膜相关基因对耐药性的影响[J]. 中国真菌学杂志, 2021, 16(6): 428-432. |
[3] | 张丽, 于淑颖, 宁雅婷, 肖盟, 肖玉玲, 崔兰英, 陈中举, 严岩, 叶丽艳, 徐英春. 全国多中心血流分离近平滑念珠菌药物敏感性和分子流行病学回顾性研究[J]. 中国真菌学杂志, 2021, 16(5): 289-295. |
[4] | 徐灵玲, 曾章锐, 丁银环, 杨葵. 川南地区侵袭性念珠菌感染流行病学及耐药性分析[J]. 中国真菌学杂志, 2021, 16(5): 319-325. |
[5] | 谭静文, 高志琴, 杨虹, 杨连娟. 国产泊沙康唑对生殖器来源念珠菌的体外药物敏感性研究[J]. 中国真菌学杂志, 2021, 16(5): 326-329,334. |
[6] | 武芳, 张叶毛, 赵建平, 赵亚楠, 周秀岚. 2012—2019年某医院临床分离念珠菌的耐药性监测[J]. 中国真菌学杂志, 2021, 16(5): 341-345. |
[7] | 孟玲宁, 刘锦燕, 项明洁, 沈瀚. 白念珠菌TFP1基因与钙调神经磷酸酶通路的相关性分析[J]. 中国真菌学杂志, 2021, 16(4): 217-221. |
[8] | 郑冰洁, 王艺蓉, 陈茜岚, 姚晨龙, 王春, 钱秋芳, 林晓. 113例儿童外阴阴道念珠菌病临床特征分析[J]. 中国真菌学杂志, 2021, 16(4): 252-256. |
[9] | 王莉, 王华, 周洁, 翟晓翔. 他克莫司与常用抗真菌药体外协同抗白念珠菌作用的初探[J]. 中国真菌学杂志, 2021, 16(4): 257-261. |
[10] | 郝小康, 王宇鹤, 徐世林, 李楠. 土槿乙酸与氟康唑联合抗白念珠菌作用的研究[J]. 中国真菌学杂志, 2021, 16(4): 262-265. |
[11] | 谢韵, 张丽娟, 帕丽达·阿布利孜. 分离自1例慢性阻塞性肺疾病患者的Aspergillus lentulus在蜡螟模型上的毒力初探[J]. 中国真菌学杂志, 2021, 16(3): 155-160. |
[12] | 李倩倩, 邵菁, 吴大强, 汪天明, 汪长中. 影响念珠菌混合生物膜形成因素的研究进展[J]. 中国真菌学杂志, 2021, 16(3): 202-206. |
[13] | 李炳坤, 黄春阳, 李秀楹, 郑艳青, 潘开素, 廖万清, 曹存巍. 中国广西地区格特隐球菌菌种复合体的基因型分析[J]. 中国真菌学杂志, 2021, 16(2): 84-89. |
[14] | 熊延靖, 厉荣玉, 吴艳红. 大蒜素对白念珠菌形态转换的影响研究[J]. 中国真菌学杂志, 2021, 16(1): 14-18. |
[15] | 华可心, 于淑颖, 徐英春. 白念珠菌生物被膜的研究进展[J]. 中国真菌学杂志, 2021, 16(1): 56-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||