[1] Halder V, Porter CBM, Chavez A, et al. Design, execution, and analysis of CRISPR-Cas9-based deletions and genetic interaction networks in the fungal pathogen Candida albicans[J]. Nat Protoc, 2019, 14(3):955-975. [2] Wensing L, Sharma J, Uthayakumar D, et al. A CRISPR interference platform for efficient genetic repression in Candida albicans[J]. mSphere, 2019, 4(1):e00002-19. [3] Xiao M, Sun ZY, Kang M, et al. Five-year national surveillance of invasive candidiasis:Species distribution and azole susceptibility from the China Hospital Invasive Fungal Surveillance Net (CHIF-NET) study[J]. J Clin Microbiol, 2018, 56(7):e00577-18. [4] Xu H, Yu SY, Zhou ML, et al. Epidemiology and antifungal susceptibility patterns of invasive fungal infections from 2012 to 2014 in a teaching hospital in central China[J]. Infect Drug Resist, 2019, 12:3641-3651. [5] Arendrup MC, Perlin DS. Echinocandin resistance:an emerging clinical problem[J]? Curr Opin Infect Dis, 2014, 27(6):484-492. [6] Spivak ES, Hanson KE. Candida auris:an emerging fungal pathogen[J]. J Clin Microbiol, 2018, 56(2):e01588-17. [7] Morio F, Lombardi L, Butler G. The CRISPR toolbox in medical mycology:State of the art and perspectives[J]. PLoS Pathog, 2020, 16(1):e1008201. [8] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. [9] Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121):823-826. [10] DiCarlo JE, Norville JE, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems[J]. Nucleic Acids Res, 2013, 41(7):4336-4343. [11] Zhang L, Zhang H, Liu Y, et al. A CRISPR-Cas9 system for multiple genome editing and pathway assembly in Candida tropicalis[J]. Biotechnol Bioeng, 2020, 117(2):531-542. [12] Zhang S, Guo F, Yan W, et al. Recent advances of CRISPR/Cas9-based genetic engineering and transcriptional regulation in industrial biology[J]. Front Bioeng Biotechnol, 2019, 7:459. [13] Jiang F, Doudna JA. CRISPR-Cas9 structures and mechanisms[J]. Annu Rev Biophys, 2017, 46:505-529. [14] Lombardi L, Turner SA, Zhao F, et al. Gene editing in clinical isolates of Candida parapsilosis using CRISPR/Cas9[J]. Sci Rep, 2017, 7(1):8051. [15] Vyas VK, Bushkin GG, Bernstein DA, et al. New CRISPR mutagenesis strategies reveal variation in repair mechanisms among fungi[J]. mSphere, 2018, 3(2):e00154-18. [16] Shapiro RS, Chavez A, Porter CBM, et al. A CRISPR-Cas9-based gene drive platform for genetic interaction analysis in Candida albicans[J]. Nat Microbiol, 2018, 3(1):73-82. [17] Vyas VK, Barrasa MI, Fink GR. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families[J]. Sci Adv, 2015, 1(3):e1500248. [18] Min K, Ichikawa Y, Woolford CA, et al. Candida albicans gene deletion with a transient CRISPR-Cas9 system[J]. mSphere, 2016, 1(3):e00130-16. [19] Ng H, Dean N. Dramatic improvement of CRISPR/Cas9 editing in Candida albicans by increased single guide RNA expression[J]. mSphere, 2017, 2(2):e00385-16. [20] Huang MY, Mitchell AP. Marker recycling in Candida albicans through CRISPR-Cas9-induced marker excision[J]. mSphere, 2017, 2(2):e00050-17. [21] Nguyen N, Quail MMF, Hernday AD. An efficient, rapid, and recyclable system for CRISPR-mediated genome editing in Candida albicans[J]. mSphere, 2017, 2(2):e00149-17. [22] Toth R, Nosek J, Mora-Montes HM, et al. Candida parapsilosis:from genes to the bedside[J]. Clin Microbiol Rev, 2019, 32(2):e00111-18. [23] Grahl N, Demers EG, Crocker AW, et al. Use of RNA-protein complexes for genome editing in non-albicans Candida species[J]. mSphere, 2017, 2(3):e00218-17. [24] Norton EL, Sherwood RK, Bennett RJ. Development of a CRISPR-Cas9 system for efficient genome editing of Candida lusitaniae[J]. mSphere, 2017, 2(3):e00217-17 [25] Enkler L, Richer D, Marchand AL, et al. Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system[J]. Sci Rep, 2016, 6:35766. [26] Maroc L, Fairhead C. A new inducible CRISPR-Cas9 system useful for genome editing and study of double-strand break repair in Candida glabrata[J]. Yeast, 2019, 36(12):723-731. [27] Zoppo M, Lombardi L, Rizzato C, et al. CORT0C04210 is required for Candida orthopsilosis adhesion to human buccal cells[J]. Fungal Genet Biol, 2018, 120:19-29. [28] Lombardi L, Oliveira-Pacheco J, Butler G. Plasmid-based CRISPR-Cas9 gene editing in multiple Candida species[J]. mSphere, 2019, 4(2):e00125-19. |