中国真菌学杂志 2021, Vol. 16 Issue (3): 196-201.
严唯1,2, 林时辉1, 幸宇2, 徐昉1
收稿日期:
2020-05-18
出版日期:
2021-06-28
发布日期:
2021-06-28
通讯作者:
徐昉,E-mail:xufang828@126.com
E-mail:xufang828@126.com
作者简介:
严唯,女(汉族),硕士研究生在读.E-mail:642024019@qq.com
基金资助:
Received:
2020-05-18
Online:
2021-06-28
Published:
2021-06-28
摘要: 侵袭性曲霉感染是免疫低下患者死亡重要原因。烟曲霉作为曲霉感染中最为常见的一类是重症患者中常见的肺部真菌感染,具有侵袭性和难治性。其通过吸入宿主体内,通过分泌的蛋白水解酶等定植于肺部。为了对抗宿主体内的保护性免疫反应并持续性生长繁殖,烟曲霉已经开发出了许多复杂且有效的免疫逃逸策略,包括黏附/定植、适应内环境压力、改变营养摄取、逃避宿主补体监视和下调宿主抗真菌反应等多种机制。了解真菌病原体与宿主间复杂的免疫串扰将是研究真菌感染发生机制和治疗标靶的核心内容,为从抗宿主免疫层面探讨烟曲霉治疗方法提供新思路。该文对近年来有关烟曲霉肺部感染的免疫逃逸机制研究进展作一综述。
中图分类号:
严唯, 林时辉, 幸宇, 徐昉. 烟曲霉肺部感染的免疫逃逸作用机制研究进展[J]. 中国真菌学杂志, 2021, 16(3): 196-201.
[1] Brown GD, Denning DW, Gow NA, et al. Hidden killers: human fungal infections [J]. Sci Transl Med, 2012, 4(165): 165-rv13. [2] Kontoyiannis DP, Marr KA, Park BJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) database [J]. Clin Infect Dis, 2010, 50(8): 1091-1100. [3] Chabi ML, Goracci A, Roche N, et al. Pulmonary aspergillosis [J]. Diagn Interv Imaging, 2015, 96(5): 435-4442. [4] Latgé JP, Chamilos G. Aspergillus fumigatus and aspergillosis in 2019 [J]. Clin Microbiol Rev, 2019, 33(1): [5] Samson RA, Visagie CM, Houbraken J, et al. Phylogeny, identification and nomenclature of the genus Aspergillus [J]. Stud Mycol, 2014, 78:141-173. [6] Latgé JP. The pathobiology of Aspergillus fumigatus [J]. Trends Microbiol, 2001, 9(8): 382-389. [7] Ghazaei C. Molecular insights into pathogenesis and infection with Aspergillus fumigatus[J]. Malays J Med Sci, 2017, 24(1): 10-20. [8] Latgé JP, Mouyna I, Tekaia F, et al. Specific molecular features in the organization and biosynthesis of the cell wall of Aspergillus fumigatus[J]. Med Mycol, 2005, 43(Suppl 1):15-22. [9] Netea MG, Brown GD,Kullberg BJ, et al. An integrated model of the recognition of Candida albicans by the innate immune system [J]. Nat Rev Microbiol, 2008, 6(1): 67-78. [10] Latgé JP. Aspergillus fumigatus and aspergillosis [J]. Clin Microbiol Rev, 1999, 12(2): 310-350. [11] Wery N. Bioaerosols from composting facilities—a review [J]. Front Cell Infect Microbiol, 2014,4:42. [12] Brakhage AA, Liebmann B. Aspergillus fumigatus conidial pigment and cAMP signal transduction: significance for virulence [J]. Med Mycol, 2005, 43(Suppl 1):S75-S82. [13] Filler SG, Sheppard DC. Fungal invasion of normally non-phagocytic host cells [J]. PLoS Pathog, 2006, 2(12): e129. [14] Ben-Ami R, Lewis RE, Kontoyiannis DP. Enemy of the (immunosuppressed) state: an update on the pathogenesis of Aspergillus fumigatus infection [J]. Br J Haematol, 2010, 150(4): 406-417. [15] Paulussen C, Hallsworth JE, álvarez-Pérez S, et al. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species [J]. Microb Biotechnol, 2017, 10(2): 296-322. [16] Kosmidis C, Denning DW. The clinical spectrum of pulmonary aspergillosis [J]. Thorax, 2015, 70(3): 270-277. [17] Gardiner DM, Waring P, Howlett BJ. The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis [J]. Microbiology (Reading), 2005, 151(Pt 4): 1021-1032. [18] Fallon JP, Reeves EP, Kavanagh K. The Aspergillus fumigatus toxin fumagillin suppresses the immune response of Galleria mellonella larvae by inhibiting the action of haemocytes [J]. Microbiology (Reading), 2011, 157(Pt 5): 1481-1488. [19] Loussert C, Schmitt C, Prevost MC, et al. In vivo biofilm composition of Aspergillus fumigatus [J]. Cell Microbiol, 2010, 12(3): 405-410. [20] Chai LY, Netea MG, Vonk AG, et al. Fungal strategies for overcoming host innate immune response [J]. Med Mycol, 2009, 47(3): 227-236. [21] Paris S, Debeaupuis JP, Crameri R, et al. Conidial hydrophobins of Aspergillus fumigatus [J]. Appl Environ Microbiol, 2003, 69(3): 1581-1588. [22] Girardin H, Sarfati J, Traoré F, et al. Molecular epidemiology of nosocomial invasive aspergillosis [J]. J Clin Microbiol, 1994, 32(3): 684-690. [23] Bayry J, Aimanianda V, Guijarro JI, et al. Hydrophobins—unique fungal proteins [J]. PLoS Pathog, 2012, 8(5): e1002700. [24] Speth C, Rambach G, Lass-Florl C, et al. Galactosaminogalactan (GAG) and its multiple roles in Aspergillus pathogenesis [J]. Virulence, 2019, 10(1): 976-983. [25] Bergmann A, Hartmann T, Cairns T, et al. A regulator of Aspergillus fumigatus extracellular proteolytic activity is dispensable for virulence [J]. Infect Immun, 2009, 77(9): 4041-4050. [26] Latgé JP, Beauvais A. Functional duality of the cell wall [J]. Curr Opin Microbiol, 2014, 20:111-117. [27] Ene IV, Adya AK, Wehmeier S, et al. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen [J]. Cell Microbiol, 2012, 14(9): 1319-1335. [28] Bhabhra R, Askew DS. Thermotolerance and virulence of Aspergillus fumigatus: role of the fungal nucleolus [J]. Med Mycol, 2005, 43(Suppl 1):S87-S93. [29] Schrettl M, Beckmann N, Varga J, et al. HapX-mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus [J]. PLoS Pathog, 2010, 6(9): e1001124. [30] Ben-Ami R. Angiogenesis at the mold-host interface: a potential key to understanding and treating invasive aspergillosis [J]. Future Microbiol, 2013, 8(11): 1453-1462. [31] Paris S, Wysong D, Debeaupuis JP, et al. Catalases of Aspergillus fumigatus [J]. Infect Immun, 2003, 71(6): 3551-3562. [32] Lambou K, Lamarre C, Beau R, et al. Functional analysis of the superoxide dismutase family in Aspergillus fumigatus [J]. Mol Microbiol, 2010, 75(4): 910-923. [33] Kurucz V, Krüger T, Antal K, et al. Additional oxidative stress reroutes the global response of Aspergillus fumigatus to iron depletion [J]. BMC Genomics, 2018, 19(1): 357. [34] Burns C, Geraghty R, Neville C, et al. Identification, cloning, and functional expression of three glutathione transferase genes from Aspergillus fumigatus [J]. Fungal Genet Biol, 2005, 42(4): 319-327. [35] Staerck C, Vandeputte P, Gastebois A, et al. Enzymatic mechanisms involved in evasion of fungi to the oxidative stress: focus on scedosporium apiospermum [J]. Mycopathologia, 2018, 183(1): 227-239. [36] Fleck C B, Schobel F, Brock M. Nutrient acquisition by pathogenic fungi: nutrient availability, pathway regulation, and differences in substrate utilization [J]. Int J Med Microbiol, 2011, 301(5): 400-407. [37] Karkowska-Kuleta J, Kozik A. Cell wall proteome of pathogenic fungi [J]. Acta Biochim Pol, 2015, 62(3): 339-351. [38] Monod M, Paris S, Sanglard D, et al. Isolation and characterization of a secreted metalloprotease of Aspergillus fumigatus [J]. Infect Immun, 1993, 61(10): 4099-4104. [39] Sriranganadane D, Waridel P, Salamin K, et al. Aspergillus protein degradation pathways with different secreted protease sets at neutral and acidic pH [J]. J Proteome Res, 2010, 9(7): 3511-3519. [40] Sharon H, Hagag S, Osherov N. Transcription factor PrtT controls expression of multiple secreted proteases in the human pathogenic mold Aspergillus fumigatus [J]. Infect Immun, 2009, 77(9): 4051-4060. [41] Amich J, Bignell E.Amino acid biosynthetic routes as drug targets for pulmonary fungal pathogens: what is known and why do we need to know more [J] ? Curr Opin Microbiol, 2016, 32:151-158. [42] Lee IR, Chow EW, Morrow CA, et al. Nitrogen metabolite repression of metabolism and virulence in the human fungal pathogen Cryptococcus neoformans [J]. Genetics, 2011, 188(2): 309-323. [43] Hensel M, Arst HN Jr, Aufauvre-Brown A, et al. The role of the Aspergillus fumigatus areA gene in invasive pulmonary aspergillosis [J]. Mol Gen Genet, 1998, 258(5): 553-557. [44] Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus [J]. Nat Prod Rep, 2014, 31(10): 1266-1276. [45] Blatzer M, Binder U, Haas H. The metalloreductase FreB is involved in adaptation of Aspergillus fumigatus to iron starvation [J]. Fungal Genet Biol, 2011, 48(11): 1027-1033. [46] Moore MM. The crucial role of iron uptake in Aspergillus fumigatus virulence [J]. Curr Opin Microbiol, 2013, 16(6): 692-699. [47] Yasmin S, Alcazar-Fuoli L, Gründlinger M, et al. Mevalonate governs interdependency of ergosterol and siderophore biosyntheses in the fungal pathogen Aspergillus fumigatus [J]. Proc Natl Acad Sci USA, 2012, 109(8): E497-504. [48] Hissen AH, Wan AN, Warwas ML, et al. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence [J]. Infect Immun, 2005, 73(9): 5493-5503. [49] Vicentefranqueira R, Amich J, Laskaris P, et al. Targeting zinc homeostasis to combat Aspergillus fumigatus infections [J]. Front Microbiol, 2015, 6:160. [50] Laskaris P, Atrouni A, Calera JA, et al. Administration of zinc chelators improves survival of mice infected with Aspergillus fumigatus both in monotherapy and in combination with caspofungin [J]. Antimicrob Agents Chemother, 2016, 60(10): 5631-5639. [51] Laskaris P, Vicentefranqueira R, Helynck O, et al. A Novel polyaminocarboxylate compound to treat murine pulmonary aspergillosis by interfering with zinc metabolism[J]. Antimicrob Agents Chemother, 2018, 62(6):e02510-17. [52] Abad A, Fernández-Molina JV, Bikandi J, et al. What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis [J]. Rev Iberoam Micol, 2010, 27(4): 155-182. [53] Vicentefranqueira R, Amich J, Marín L, et al. The Transcription factor ZafA regulates the homeostatic and adaptive response to zinc starvation in Aspergillus fumigatus [J]. Genes (Basel), 2018;9(7):318. [54] Behnsen J, Hartmann A, Schmaler J, et al. The opportunistic human pathogenic fungus Aspergillus fumigatus evades the host complement system [J]. Infect Immun, 2008, 76(2): 820-827. [55] Langfelder K, Jahn B, Gehringer H, et al. Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence [J]. Med Microbiol Immunol, 1998, 187(2): 79-89. [56] Tsai HF, Chang YC, Washburn RG, et al. The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence [J]. J Bacteriol, 1998, 180(12): 3031-3038. [57] Behnsen J, Lessing F, Schindler S, et al. Secreted Aspergillus fumigatus protease Alp1 degrades human complement proteins C3, C4, and C5 [J]. Infect Immun, 2010, 78(8): 3585-3594. [58] Banerjee B, Greenberger PA, Fink JN, et al. Immunological characterization of Asp f 2, a major allergen from Aspergillus fumigatus associated with allergic bronchopulmonary aspergillosis [J]. Infect Immun, 1998, 66(11): 5175-5182. [59] Amich J, Vicentefranqueira R, Leal F, et al. Aspergillus fumigatus survival in alkaline and extreme zinc-limiting environments relies on the induction of a zinc homeostasis system encoded by the zrfC and aspf2 genes [J]. Eukaryot Cell, 2010, 9(3): 424-437. [60] Dasari P, Shopova IA, Stroe M, et al. Aspf2 from Aspergillus fumigatus recruits human immune regulators for immune evasion and cell damage [J]. Front Immunol, 2018,9:1635. [61] Aimanianda V, Bayry J, Bozza S, et al. Surface hydrophobin prevents immune recognition of airborne fungal spores [J]. Nature, 2009, 460(7259): 1117-1121. [62] Bozza S, Clavaud C, Giovannini G, et al. Immune sensing of Aspergillus fumigatus proteins, glycolipids, and polysaccharides and the impact on Th immunity and vaccination [J]. J Immunol, 2009, 183(4): 2407-2414. [63] Gresnigt MS, Bozza S, Becker KL, et al. A polysaccharide virulence factor from Aspergillus fumigatus elicits anti-inflammatory effects through induction of interleukin-1 receptor antagonist [J]. PLoS Pathog, 2014, 10(3): e1003936. [64] Raffa N, Keller NP. A call to arms: Mustering secondary metabolites for success and survival of an opportunistic pathogen [J]. PLoS Pathog, 2019, 15(4): e1007606. [65] Perez-Cuesta U, Aparicio-Fernandez L, Guruceaga X, et al. Melanin and pyomelanin in Aspergillus fumigatus: from its genetics to host interaction [J]. Int Microbiol, 2020, 23(1): 55-63. [66] Jahn B, Langfelder K, Schneider U, et al. PKSP-dependent reduction of phagolysosome fusion and intracellular kill of Aspergillus fumigatus conidia by human monocyte-derived macrophages [J]. Cell Microbiol, 2002, 4(12): 793-803. [67] Akoumianaki T, Kyrmizi I, Valsecchi I, et al. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity [J]. Cell Host Microbe, 2016, 19(1): 79-90. [68] Chai LY, Netea MG, Sugui J, et al. Aspergillus fumigatus conidial melanin modulates host cytokine response [J]. Immunobiology, 2010, 215(11): 915-920. [69] Volling K, Thywissen A, Brakhage AA, et al. Phagocytosis of melanized Aspergillus conidia by macrophages exerts cytoprotective effects by sustained PI3K/Akt signalling [J]. Cell Microbiol, 2011, 13(8): 1130-1148. [70] Hof H, Kupfahl C. Gliotoxin in Aspergillus fumigatus: an example that mycotoxins are potential virulence factors [J]. Mycotoxin Res, 2009, 25(3): 123-131. [71] Schrettl M, Carberry S, Kavanagh K, et al. Self-protection against gliotoxin--a component of the gliotoxin biosynthetic cluster, GliT, completely protects Aspergillus fumigatus against exogenous gliotoxin [J]. PLoS Pathog, 2010, 6(6): e1000952. [72] Spikes S, Xu R, Nguyen CK, et al. Gliotoxin production in Aspergillus fumigatus contributes to host-specific differences in virulence [J]. J Infect Dis, 2008, 197(3): 479-486. [73] Scharf DH, Heinekamp T, Remme N, et al. Biosynthesis and function of gliotoxin in Aspergillus fumigatus [J]. Appl Microbiol Biotechnol, 2012, 93(2): 467-472. [74] Das L, Vinayak M. Anti-carcinogenic action of curcumin by activation of antioxidant defence system and inhibition of NF-kappaB signalling in lymphoma-bearing mice [J]. Biosci Rep, 2012, 32(2): 161-170. [75] Guruceaga X, Ezpeleta G, Mayayo E, et al. A possible role for fumagillin in cellular damage during host infection by Aspergillus fumigatus [J]. Virulence, 2018, 9(1): 1548-1561. [76] Guruceaga X, Perez-Cuesta U, Abad-Diaz de Cerio A, et al. Fumagillin, a mycotoxin of Aspergillus fumigatus: biosynthesis, biological activities, detection, and applications [J]. Toxins (Basel), 2019,12(1):7. [77] Rementeria A,Lopez-Molina N,Ludwig A, et al. Genes and molecules involved in Aspergillus fumigatus virulence [J]. Rev Iberoam Micol, 2005, 22(1): 1-23. [78] Lacadena J, Alvarez-García E, Carreras-Sangrà N, et al. Fungal ribotoxins: molecular dissection of a family of natural killers [J]. FEMS Microbiol Rev, 2007, 31(2): 212-237. [79] Del SG, Mencacci A, Cenci E, et al. Antifungal type 1 responses are upregulated in IL-10-deficient mice [J]. Microbes Infect, 1999, 1(14): 1169-1180. [80] Homma T,Kato A, Bhushan B, et al. Role of Aspergillus fumigatus in triggering protease-activated receptor-2 in airway epithelial cells and skewing the cells toward a T-helper 2 bias [J]. Am J Respir Cell Mol Biol, 2016, 54(1): 60-70. [81] Cenci E, Mencacci A, Bacci A, et al. T cell vaccination in mice with invasive pulmonary aspergillosis [J]. J Immunol, 2000, 165(1): 381-388. |
[1] | 刘慧敏, 马彦. 烟曲霉极性生长相关基因研究进展[J]. 中国真菌学杂志, 2021, 16(4): 279-283. |
[2] | 谢韵, 张丽娟, 帕丽达·阿布利孜. 分离自1例慢性阻塞性肺疾病患者的Aspergillus lentulus在蜡螟模型上的毒力初探[J]. 中国真菌学杂志, 2021, 16(3): 155-160. |
[3] | 刘晓, 宋营改, 李若瑜. 重症呼吸道病毒感染并发/继发侵袭性真菌感染[J]. 中国真菌学杂志, 2021, 16(3): 211-216. |
[4] | 赵蕊, 陈芳艳, 韩黎. 肺泡上皮细胞应对烟曲霉感染过程中胞内双特异性磷酸酶表达规律的研究[J]. 中国真菌学杂志, 2020, 15(3): 129-133. |
[5] | 黄春阳, 潘开素, 李秀楹, 曹存巍, 郑艳青. Calcineurin A基因对马尔尼菲篮状菌致病力的影响[J]. 中国真菌学杂志, 2020, 15(3): 138-144. |
[6] | 刘庆华, 王成, 胡芸倩, 董雪, 李强. 普通裂褶菌致肺部感染1例[J]. 中国真菌学杂志, 2020, 15(3): 173-174. |
[7] | 张涓, 李晓会, 冯学玲, 张晶晶. 苦豆子生物碱抗烟曲霉、须癣毛癣菌和新生隐球菌的作用研究[J]. 中国真菌学杂志, 2020, 15(2): 72-77. |
[8] | 曹雪, 马彦. 烟曲霉极性生长及毒力相关基因、转录因子及相关通路的研究进展[J]. 中国真菌学杂志, 2020, 15(2): 121-124. |
[9] | 刘晶, 徐稳, 谭志伟, 刘瑶瑶, 周玲玲, 付裕, 龙南彪. 烟曲霉突变体库的构建及伊曲康唑耐药菌的筛选[J]. 中国真菌学杂志, 2020, 15(1): 47-51. |
[10] | 粟慧琳, 陈宗倩, 朱均昊, 李莉, 章强强, 徐金华, 朱敏. 1935例深部曲霉临床分离株资料回顾性分析[J]. 中国真菌学杂志, 2019, 14(4): 217-221. |
[11] | 姬名硕, 王晓东, 帕丽达·阿布利孜. NLRP3炎症小体在真菌感染中的作用机制研究进展[J]. 中国真菌学杂志, 2019, 14(4): 253-256. |
[12] | 邓洁华, 李继红, 祁晓明, 王刚生. 桂皮醛抗曲霉的敏感性及对烟曲霉细胞壁的影响[J]. 中国真菌学杂志, 2018, 13(6): 345-349. |
[13] | 刘晓宇, 张常建, 胡颖嵩, 陈芳艳, 韩黎. 磷脂酶D缺失对小鼠抗烟曲霉感染过程的影响研究[J]. 中国真菌学杂志, 2018, 13(3): 129-133. |
[14] | 韦永刚, 颜红英, 肖远红. 老年慢性阻塞性肺疾病急性加重合并肺部感染的病原菌分布及高危因素分析[J]. 中国真菌学杂志, 2018, 13(3): 177-180,183. |
[15] | 刘双娟, 李艳春, 魏绪仓. 罕见的侵袭性肺枝孢样枝孢霉病1例[J]. 中国真菌学杂志, 2018, 13(2): 91-92. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||