[1] Thomas E, Bertolotti A, Barreau A, et al. From phaeohyphomycosis to disseminated chromoblastomycosis:A retrospective study of infections caused by dematiaceous fungi[J]. Med Mal Infect, 2018, 48(4):278-285. [2] Abliz P, Fukushima K, Takizawa K, et al. Identification of pathogenic dematiaceous fungi and related taxa based on large subunit ribosomal DNA D1/D2 domain sequence analysis[J]. FEMS Immunol Med Microbiol, 2004, 40(1):41-49. [3] Santos DW, Padovan AC, Melo AS, et al. Molecular identification of melanised non-sporulating moulds:a useful tool for studying the epidemiology of phaeohyphomycosis[J]. Mycopathologia, 2013, 175(5-6):445-454. [4] Schoch CL, Seifert KA, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi[J]. Proc Natl Acad Sci U S A, 2012, 109(16):6241-6246. [5] 王玲, 刘涵, 吕雪莲. 少见致病性暗色真菌的相关研究[J]. 实用皮肤病学杂志, 2016, 9(1):48-52. [6] Singh A, Singh PK, Kumar A, et al. Molecular and matrix-assisted laser desorption ionization-time of flight mass spectrometry-based characterization of clinically significant melanized fungi in India[J]. J Clin Microbiol, 2017, 55(4):1090-1103. [7] Paul S, Singh P, Rudramurthy SM, et al. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry:protocol standardization and database expansion for rapid identification of clinically important molds[J]. Future Microbiol, 2017, 12:1457-1466. [8] Paul S, Singh P, Sharma S, et al. MALDI-TOF MS-based identification of melanized fungi is faster and reliable after the expansion of in-house database[J]. Proteomics Clin Appl, 2019, 13(3):e1800070. [9] Barde F, Billaud E, Goldwirt L, et al. Low central nervous system posaconazole concentrations during cerebral phaeohyphomycosis[J]. Antimicrob Agents Chemother, 2019, 63(11):e01184-01119. [10] Boyce RD, Deziel PJ, Otley CC, et al. Phaeohyphomycosis due to Alternaria species in transplant recipients[J]. Transpl Infect Dis, 2010, 12(3):242-250. [11] Badali H, De Hoog GS, Curfs-Breuker I, et al. In vitro activities of eight antifungal drugs against 70 clinical and environmental isolates of Alternaria species[J]. J Antimicrob Chemother, 2009, 63(6):1295-1297. [12] Alastruey-Izquierdo A, Cuesta I, Ros L, et al. Antifungal susceptibility profile of clinical Alternaria spp. identified by molecular methods[J]. J Antimicrob Chemother, 2011, 66(11):2585-2587. [13] Bajwa R, Wojciechowski AL, Hsiao CB. Cutaneous alternariosis in a renal transplant patient successfully treated with posaconazole:Case report and literature review[J]. Med Mycol Case Rep, 2017, 15:16-20. [14] Schuermans W, Hoet K, Stessens L, et al. Molecular identification of cutaneous alternariosis in a renal transplant patient[J]. Mycopathologia, 2017, 182(9-10):873-877. [15] Lyskova P, Kubanek M, Hubka V, et al. Successful posaconazole therapy of disseminated alternariosis due to Alternaria infectoria in a heart transplant recipient[J]. Mycopathologia, 2017, 182(3-4):297-303. [16] Miceli MH, Kauffman CA. Isavuconazole:A new broad-spectrum triazole antifungal agent[J]. Clin Infect Dis, 2015, 61(10):1558-1565. [17] Thompson GR 3rd, Wiederhold NP, Sutton DA, et al. In vitro activity of isavuconazole against Trichosporon, Rhodotorula, Geotrichum, Saccharomyces and Pichia species[J]. J Antimicrob Chemother, 2009, 64(1):79-83. [18] Zheng H, Nana S, Mei H, et al. In vitro activities of ravuconazole and isavuconazole against dematiaceous fungi[J]. Antimicrob Agents Chemother, 2020:00643-00620. [19] Kano R, Hiruma J, Yokota M, et al. In vitro ravuconazole susceptibility of anthropophilic dermatophyte strains isolated from Japanese patients[J]. Jpn J Infect Dis, 2020, 73(3):250-252. [20] Yamaguchi H. Potential of ravuconazole and its prodrugs as the new oraltherapeutics for onychomycosis[J]. Med Mycol J, 2016, 57(4):E93-e110. [21] Khanna D, Bharti S. Luliconazole for the treatment of fungal infections:an evidence-based review[J]. Core Evid, 2014, 9:113-124. [22] Niwano Y, Seo A, Kanai K, et al. Therapeutic efficacy of lanoconazole, a new imidazole antimycotic agent, for experimental cutaneous candidiasis in guinea pigs[J]. Antimicrob Agents Chemother, 1994, 38(9):2204-2206. [23] Gupta AK, Simpson FC. Efinaconazole (Jublia) for the treatment of onychomycosis[J]. Expert Rev Anti Infect Ther, 2014, 12(7):743-752. [24] Shokoohi GR, Badali H, Mirhendi H, et al. In vitro activities of luliconazole, lanoconazole, and efinaconazole compared with those of five antifungal drugs against melanized fungi and relatives[J]. Antimicrob Agents Chemother, 2017, 61(11):e00635-00617. [25] 杨苏腾, 廖勇, 巴根, 等. 以Hsp90为靶点治疗真菌感染的研究进展和展望[J]. 中国真菌学杂志, 2016, 11(01):53-57. [26] Cowen LE, Steinbach WJ. Stress, drugs, and evolution:the role of cellular signaling in fungal drug resistance[J]. Eukaryot Cell, 2008, 7(5):747-764. [27] Gao L, Sun Y, He C, et al. In vitro interactions between 17-AAG and azoles against Exophiala dermatitidis[J]. Mycoses, 2018, 61(11):853-856. [28] Cowen LE, Singh SD, Köhler JR, et al. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease[J]. Proc Natl Acad Sci U S A, 2009, 106(8):2818-2823. [29] Juvvadi PR, Steinbach WJ. Calcineurin orchestrates hyphal growth, septation, drug resistance and pathogenesis of Aspergillus fumigatus:Where do we go from here?[J]. Pathogens, 2015, 4(4):883-893. [30] Gao L, Sun Y, He C, et al. Synergistic effects of tacrolimus and zoles against Exophiala dermatitidis[J]. Antimicrob Agents Chemother, 2017, 61(12):e00948-00917. |