[1] Capponi M, Sureau P, Segretain G. Penicillosis from Rhizomys sinensis[J]. Bull Soc Pathol ExotFiliales,1956,49(3):418-421. [2] Kawila R, Chaiwarith R, Supparatpinyo K. Clinical and laboratory characteristics of penicilliosis marneffei among patients with and without HIV infection in Northern Thailand:a retrospective study[J]. BMC Infect Dis,2013,13(1):464.doi:10.1186/1471-2334-13-464. [3] Castro-Lainez MT, Sierra-Hoffman M, LLompart-Zeno J, et al. Talaromyces marneffei infection in a non-HIV non-endemic population[J]. IDCases,2018,12:21-24. [4] Zheng J, Gui X, Cao Q, et al. A clinical study of acquired immunodeficiency syndrome associated penicillium marneffei infection from a non-endemic area in China[J]. PLoS One, 2015,10(6):e0130376. [5] Zhou L, Cao X, Fang J, et al. Macrophages polarization is mediated by the combination of PRR ligands and distinct inflammatory cytokines[J]. Int J Clin Exp Pathol,2015,8(9):10964-10974. [6] Srinoulprasert Y, Pongtanalert P, Chawengkirttikul R, et al. Engagement of Penicillium marneffei conidia with multiple pattern recognition receptors on human monocytes[J]. Microbiol Immunol,2009,53(3):162-172. [7] Huang JH, Lin CY, Wu SY, et al. CR3 and Dectin-1 collaborate in macrophage cytokine response through association on lipid rafts and activation of Syk-JNK-AP-1 pathway[J]. PLoS Pathog,2015,11(7):e1004985.doi:10.1371/journal.ppat.1004985. [8] Mayadas TN, Cullere X. Neutrophil β2 integrins:moderators of life or death decisions[J]. Trends Immunol,2005,26(7):388-395. [9] Abram CL, Lowell CA. The ins and outs of leukocyte integrin signaling[J]. Annu Rev Immunol,2009,27(1):339-362. [10] Harokopakis E, Hajishengallis G. Integrin activation by bacterial fimbriae through a pathway involving CD14, Toll-like receptor 2, and phosphatidylinositol-3-kinase[J]. Eur J Immunol, 2005,35(4):1201-1210. [11] Li X, Utomo A, Cullere X, et al. The β-Glucan receptor Dectin-1 activates the integrin Mac-1 in neutrophils via Vav protein signaling to promote Candida albicans clearance[J]. Cell Host Microbe, 2011,10(6):603-615. [12] Brown GD, Gordon S. Immune recognition. A new receptor for beta-glucans[J]. Nature,2001, 413(6851):36-37. [13] Peyron P, Bordier C, Nc/Diaye EN, et a1. Nonopsonic phagocytosis of Mycobaeterium kansasii by human neutrophils depends on cholesterol and is mediated by CR3 associated with glycosylphosphatidylinositol-anchored proteins[J]. J Immunol,2000,165(9):5186-5191. [14] Rongrungruang Y, Levitz SM. Interactions of Penicillium marneffei with human leukocytes in vitro[J]. Infect Immun. 1999;67(9):4732-4736. [15] Srinoulprasert Y, Pongtanalert P, Chawengkirttikul R, et al. Engagement of Penicillium marneffei conidia with multiple pattern recognition receptors on human monocytes[J].Microbiol Immunol,2009,53(3):162-172. [16] Leulier F, Lemaitre B. Toll-like receptors-taking an evolutionary approach[J]. Nat Rev Genet.2008,9(3):165-178. [17] Yamamoto M, Takeda K. Current views of Toll-like receptor signaling pathways[J]. Gastroenterol Res Pract,2010,2010:240365. [18] Netea MG, Gow NA, Munro CA, et al.Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors[J]. J Clin Invest,2006,116(6):1642-1650. [19] Gantner BN,Simmons RM, Canavera SJ, et al. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2[J]. J Exp Med,2003,197(9):1107-1117. [20] 赵文杰, 席丽艳, 马黎, 等. 马尔尼菲青霉对巨噬细胞模式识别受体TLR-2、TLR-4、Dectin-1的表达及TNF-α分泌的影响[J]. 南方医科大学学报,2008,28(1):37-40. [21] Chen R, Ji G, Wang L, et al. Activation of ERK1/2 and TNF-alpha production are regulated by calcium/calmodulin signaling pathway during Penicillium marneffei infection within human macrophages[J]. Microb Pathog,2016,93(1):95-99. [22] Dabbagh K, Lewis DB. Toll-like receptors and T-helper-1/T-helper-2 responses[J]. Curr Opin Infect Dis,2003,16(3):199-204. [23] 阙冬梅, 张军民, 胡永轩, 等. TLR9参与巨噬细胞吞噬马尔尼菲青霉的作用研究[J].中国人兽共患病学报,2011,27(6):511-514. [24] Tam JM, Mansour MK, Khan, NS, et al. Dectin-1-dependent LC3 recruitment to phagosomes enhances fungicidal activity in macrophages[J]. J Infect Dis,2014,210(11):1844-1854. [25] Lau SK, Lam CS, Ngan AH, et al. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for rapid identification of mold and yeast cultures of Penicillium marneffei[J]. BMC Microbiol,2016,16:36.doi:10.1186/s12866-016-0656-0. [26] Plato A, Willment JA, Brown GD. C-type lectin-like receptors of the dectin-1 cluster:ligands and signaling pathways[J]. Int Rev Immunol,2013,32(2):134-56. [27] Sendide K, Reiner NE, Lee JS, et a1. Cross-talk between CDl4 and complement receptor 3 promotes phagoeytosis of mycobacteria:regulation by phosphatidylinositol 3-kinase and eytohesin-1[J]. J Immunol,2005,174(7):4210-4219. [28] Brown AJ, Haynes K, Quinn J. Nitrosative and oxidative stress responses in fungal pathogenicity[J]. Curr Opin Microbiol,2009,12(4):384-391. [29] Cogliati M, Roverselli A, Boelaert JR, et al. Development of an in vitro macrophage system to assess Penicillium marneffei growth and susceptibility to nitric oxide[J]. Infect Immun,1997, 65(1):279-284. [30] Liu D, Liang L, Luo Q, et al. Morphology of Penicillium marneffei under oxidative stress in vitro[J]. Mycoses,2011,54(2):113-118. [31] Chen RQ, Ji GQ, Wang L, et al. Activation of ERK1/2 and TNF-α production are regulated by calcium/calmodulin signaling pathway during Penicillium marneffei infection within human macrophages[J]. Microbial Pathogenesis,2016,93:95-99. [32] Pongpom M, Vanittanakom P, Nimmanee P, et al. Adaptation to macrophage killing by Talaromyces marneffei[J]. Future science OA,2017,3(3):FSO215.doi:10.4155/fsoa-2017-0032. [33] Moye-Rowley WS. Regulation of the transcriptional response to oxidative stress in fungi:similarities and differences[J]. Eukaryot Cell,2003,2(3):381-389. [34] Lee J, Godon C, Lagniel G, et al. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast[J]. J Biol Chem,1999,274(23):16040-16046. [35] Ikner A, Shiozaki K. Yeast signaling pathways in the oxidative stress response[J]. Mutat Res, 2005, 569(1-2):13-27. [36] Nimmanee P, Woo PC, Kummasook A, et al. Characterization of sakA gene from pathogenic dimorphic fungus Penicillium marneffei[J]. Int J Med, Microbiol, 2015, 305(1):65-74. [37] Nimmanee P, Tam EW, Woo PC, et al. Role of the Talaromyces marneffei(Penicillium marneffei) sakA gene in nitrosative stress response, conidiation and red pigment production[J]. FEMS Microbiol Lett, 2017,364(8). doi:10.1093/femsle/fnw292. [38] Boyce KJ, Cao CW, Andrianopoulos A. Two-component signaling regulates osmotic stress adaptation via SskA and the high-osmolarity glycerol pathway in the human pathogen Talaromyces marneffei[J]. mSphere, 2016,1(1):e00086-15. [39] Santos JL, Shiozaki K. Fungal histidine kinase[J]. Sci STKE,2001,2001(98):re1. [40] Boyce KJ, Schreider L, Kirszenblat L, et al. The two-component histidine kinases DrkA and SlnA are required for in vivo growth in the human pathogen Penicillium marneffei[J]. Mol Microbiol, 2011, 82(5):1164-1184. [41] Tiwari S, Thakur R, Shankar J. Role of heat-shock proteins in cellular function and in the biology of fungi[J]. Biotechnol Res Int, 2015,2015(2):1-11. [42] Pongpom M, Vanittanakom N. Stress adaptation in Talaromyces marneffei[J]. Chiang Mai, 2016, 55(Suppl3):23-30. [43] Boyce KJ, McLaunchlan A, Schreider L, et al. Intracellular growth is dependent on tyrosine catabolism in the dimorphic fungal pathogen Penicillium marneffei[J]. PLoS Pathog, 2015, 11(3):e1004790. [44] Liu D, Wei L, Guo T, et al. Detection of DOPA-melanin in the dimorphic fungal pathogen Penicillium marneffei and its effect on macrophage phagocytosis in vitro[J]. PLoS ONE, 2014, 9(3):e92610. |