[1] Hartnett KP, Jackson KA, Felsen C, et al. Bacterial and fungal infections in persons who inject drugs-Western New York, 2017[J]. MMWR Morb Mortal Wkly Rep, 2019, 68(26):583-586.
[2] Pappas PG, Lionakis MS, Arendrup MC, et al. Invasive candidiasis[J]. Nat Rev Dis Primers, 2018, 4:18026.
[3] Kullberg BJ, Arendrup MC. Invasive candidiasis[J]. N Engl J Med, 2015, 373(15):1445-1456.
[4] Witchley JN, Penumetcha P, Abon NV, et al. Candida albicans morphogenesis programs control the balance between gut commensalism and invasive infection[J]. Cell Host Microbe, 2019, 25(3):432-443.e436.
[5] Gow NA, van de Veerdonk FL, Brown AJ, et al. Candida albicans morphogenesis and host defence:discriminating invasion from colonization[J]. Nat Rev Microbiol, 2011, 10(2):112-122.
[6] Colombo AL, de Almeida Junior JN, Slavin MA, et al. Candida and invasive mould diseases in non-neutropenic critically ill patients and patients with haematological cancer[J]. Lancet Infect Dis, 2017, 17(11):e344-e356.
[7] Kamai Y, Kubota M, Kamai Y, et al. Contribution of Candida albicans ALS1 to the pathogenesis of experimental oropharyngeal candidiasis[J]. Infect Immun, 2002, 70(9):5256-5258.
[8] El-Kirat-Chatel S, Beaussart A, Alsteens D, et al. Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans[J]. Nanoscale, 2013, 5(3):1105-1115.
[9] Phan QT, Myers CL, Fu Y, et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells[J]. PLoS Biol, 2007, 5(3):e64.
[10] Phan QT, Fratti RA, Prasadarao NV, et al. N-cadherin mediates endocytosis of Candida albicans by endothelial cells[J]. J Biol Chem, 2005, 280(11):10455-10461.
[11] Almeida RS, Brunke S, Albrecht A, et al. the hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin[J]. PLoS Pathog, 2008, 4(11):e1000217.
[12] Alves CT, Wei XQ, Silva S, et al. Candida albicans promotes invasion and colonisation of Candida glabrata in a reconstituted human vaginal epithelium[J]. J Infect, 2014, 69(4):396-407.
[13] Edwards JE Jr, Schwartz MM, Schmidt CS, et al. A fungal immunotherapeutic vaccine (NDV-3A) for treatment of recurrent vulvovaginal candidiasis-A phase 2 randomized, double-blind, placebo-controlled trial[J]. Clin Infect Dis, 2018, 66(12):1928-1936.
[14] Sui X, Yan L, Jiang YY. The vaccines and antibodies associated with Als3p for treatment of Candida albicans infections[J]. Vaccine, 2017, 35(43):5786-5793.
[15] Brena S, Omaetxebarria MJ, Elguezabal N, et al. Fungicidal monoclonal antibody C7 binds to Candida albicans Als3[J]. Infect Immun, 2007, 75(7):3680-3682.
[16] Moragues MD, Omaetxebarria MJ, Elguezabal N, et al. A monoclonal antibody directed against a Candida albicans cell wall mannoprotein exerts three anti-C. albicans activities[J]. Infect Immun, 2003, 71(9):5273-5279.
[17] Staab JF, Sundstrom P. Genetic organization and sequence analysis of the hypha-specific cell wall protein gene HWP1 of Candida albicans[J]. Yeast, 1998, 14(7):681-686.
[18] Orsi CF, Borghi E, Colombari B, et al. Impact of Candida albicans hyphal wall protein 1(HWP1) genotype on biofilm production and fungal susceptibility to microglial cells[J]. Microb Pathog, 2014, 69-7020-27.
[19] Sundstrom P. Adhesion in Candida spp[J]. Cell Microbiol, 2002, 4(8):461-469.
[20] Staab JF, Bradway SD, Fidel PL, et al. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1[J]. Science, 1999, 283(5407):1535-1538.
[21] Nobile CJ, Schneider HA, Nett JE, et al. Complementary adhesin function in C. albicans biofilm formation[J]. Curr Biol, 2008, 18(14):1017-1024.
[22] Younes S, Bahnan W, Dimassi HI, et al. The Candida albicans Hwp2 is necessary for proper adhesion, biofilm formation and oxidative stress tolerance[J]. Microbiol Res, 2011, 166(5):430-436.
[23] Li F, Palecek SP. EAP1, a Candida albicans gene involved in binding human epithelial cells[J]. Eukaryot Cell, 2003, 2(6):1266-1273.
[24] Li F, Palecek SP. Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions[J]. Microbiology, 2008, 154(Pt 4):1193-1203.
[25] Orellana-Munoz S, Duenas-Santero E, Arnaiz-Pita Y, et al. The anillin-related Int1 protein and the Sep7 septin collaborate to maintain cellular ploidy in Candida albicans[J]. Sci Rep, 2018, 8(1):2257.
[26] Green JV, Orsborn KI, Zhang M, et al. Heparin-binding motifs and biofilm formation by Candida albicans[J]. J Infect Dis, 2013, 208(10):1695-1704.
[27] Wiesner SM, Bendel CM, Hess DJ, et al. Adherence of yeast and filamentous forms of Candida albicans to cultured enterocytes[J]. Crit Care Med, 2002, 30(3):677-683.
[28] Buurman ET, Westwater C, Hube B, et al. Molecular analysis of CaMnt1p, a mannosyl transferase important for adhesion and virulence of Candida albicans[J]. Proc Natl Acad Sci U S A, 1998, 95(13):7670-7675.
[29] Thomson LM, Bates S, Yamazaki S, et al. Functional characterization of the Candida albicans MNT1 mannosyltransferase expressed heterologously in Pichia pastoris[J]. J Biol Chem, 2000, 275(25):18933-18938.
[30] Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms[J]. Virulence, 2013, 4(2):119-128.
[31] Lu Y, Su C, Liu H. Candida albicans hyphal initiation and elongation[J]. Trends Microbiol, 2014, 22(12):707-714.
[32] Sudbery P, Gow N, Berman J. The distinct morphogenic states of Candida albicans[J]. Trends Microbiol, 2004, 12(7):317-324.
[33] Jacobsen ID, Wilson D, Wachtler B, et al. Candida albicans dimorphism as a therapeutic target[J]. Expert Rev Anti Infect Ther, 2012, 10(1):85-93.
[34] Sudbery PE. Growth of Candida albicans hyphae[J]. Nat Rev Microbiol, 2011, 9(10):737-748.
[35] Juvvadi PR, Fox D 3rd, Bobay BG, et al. Harnessing calcineurin-FK506-FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents[J]. Nat Commun, 2019, 10(1):4275.
[36] Liang SH, Anderson MZ, Hirakawa MP, et al. Hemizygosity enables a mutational transition governing fungal virulence and commensalism[J]. Cell Host Microbe, 2019, 25(3):418-431.
[37] Xu W, Solis NV, Ehrlich RL, et al. Activation and alliance of regulatory pathways in C. albicans during mammalian infection[J]. PLoS Biol, 2015, 13(2):e1002076.
[38] Lo HJ, Kohler JR, DiDomenico B, et al. Nonfilamentous C. albicans mutants are avirulent[J]. Cell, 1997, 90(5):939-949.
[39] Stoldt VR, Sonneborn A, Leuker CE, et al. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi[J]. Embo J, 1997, 16(8):1982-1991.
[40] Shapiro RS, Robbins N and Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease[J]. Microbiol Mol Biol Rev, 2011, 75(2):213-267.
[41] Saputo S, Chabrier-Rosello Y, Luca FC, et al. The RAM network in pathogenic fungi[J]. Eukaryot Cell, 2012, 11(6):708-717.
[42] Desai PR, van Wijlick L, Kurtz D, et al. Hypoxia and temperature regulated morphogenesis in Candida albicans[J]. PLoS Genet, 2015, 11(8):e1005447.
[43] Leng P, Lee PR, Wu H, et al. Efg1, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein[J]. J Bacteriol, 2001, 183(13):4090-4093.
[44] Maiti P, Ghorai P, Ghosh S, et al. Mapping of functional domains and characterization of the transcription factor Cph1 that mediate morphogenesis in Candida albicans[J]. Fungal Genet Biol, 2015, 8345-57.
[45] Moreno-Ruiz E, Galan-Diez M, Zhu W, et al. Candida albicans internalization by host cells is mediated by a clathrin-dependent mechanism[J]. Cell Microbiol, 2009, 11(8):1179-1189.
[46] Dalle F, Wachtler B, L'Ollivier C, et al. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes[J]. Cell Microbiol, 2010, 12(2):248-271.
[47] Sun JN, Solis NV, Phan QT, et al. Host cell invasion and virulence mediated by Candida albicans Ssa1[J]. PLoS Pathog, 2010, 6(11):e1001181.
[48] Phan QT, Eng DK, Mostowy S, et al. Role of endothelial cell septin 7 in the endocytosis of Candida albicans[J]. MBio, 2013, 4(6):e00542-00513.
[49] Wachtler B, Citiulo F, Jablonowski N, et al. Candida albicans-epithelial interactions:dissecting the roles of active penetration, induced endocytosis and host factors on the infection process[J]. PLoS One, 2012, 7(5):e36952.
[50] Villar CC, Kashleva H, Nobile CJ, et al. Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p[J]. Infect Immun, 2007, 75(5):2126-2135.
[51] Gabrielli E, Sabbatini S, Roselletti E, et al. In vivo induction of neutrophil chemotaxis by secretory aspartyl proteinases of Candida albicans[J]. Virulence, 2016, 7(7):819-825.
[52] Kalkanci A, Bozdayi G, Biri A, et al. Distribution of secreted aspartyl proteinases using a polymerase chain reaction assay with SAP specific primers in Candida albicans isolates[J]. Folia Microbiol (Praha), 2005, 50(5):409-413.
[53] Bruno VM, Shetty AC, Yano J, et al. Transcriptomic analysis of vulvovaginal candidiasis identifies a role for the NLRP3 inflammasome[J]. MBio, 2015, 6(2):e00182-15.
[54] Schaller M, Korting HC, Borelli C, et al. Candida albicans-secreted aspartic proteinases modify the epithelial cytokine response in an in vitro model of vaginal candidiasis[J]. Infect Immun, 2005, 73(5):2758-2765.
[55] Schaller M, Korting HC, Schafer W, et al. Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis[J]. Mol Microbiol, 1999, 34(1):169-180.
[56] Kumar R, Saraswat D, Tati S, et al. Novel aggregation properties of Candida albicans secreted aspartyl proteinase Sap6 mediate virulence in oral candidiasis[J]. Infect Immun, 2015, 83(7):2614-2626.
[57] Theiss S, Ishdorj G, Brenot A, et al. Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence[J]. Int J Med Microbiol, 2006, 296(6):405-420.
[58] Fu Y, Ibrahim AS, Fonzi W, et al. Cloning and characterization of a gene (LIP1) which encodes a lipase from the pathogenic yeast Candida albicans[J]. Microbiology, 1997, 143(Pt 2):331-340.
[59] Hube B, Stehr F, Bossenz M, et al. Secreted lipases of Candida albicans:cloning, characterisation and expression analysis of a new gene family with at least ten members[J]. Arch Microbiol, 2000, 174(5):362-374.
[60] Stehr F, Felk A, Gacser A, et al. Expression analysis of the Candida albicans lipase gene family during experimental infections and in patient samples[J]. FEMS Yeast Res, 2004, 4(4-5):401-408.
[61] Gacser A, Trofa D, Schafer W, et al. Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence[J]. J Clin Invest, 2007, 117(10):3049-3058.
[62] Gacser A, Stehr F, Kroger C, et al. Lipase 8 affects the pathogenesis of Candida albicans[J]. Infect Immun, 2007, 75(10):4710-4718.
[63] Moyes DL, Wilson D, Richardson JP, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection[J]. Nature, 2016, 532(7597):64-68.
[64] Verma AH, Richardson JP, Zhou C, et al. Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin[J]. Sci Immunol, 2017, 2(17):e8834. |