[1] Tsui C, Kong EF, Jabra-Rizk MA. Pathogenesis of Candida albicans biofilm[J]. Pathog Dis, 2016, 80(3):565-595.
[2] Nobile, CJ, Fox, EP, Nett, JE, et al. A recently evolved transcriptional network controls biofifilm development in Candida albicans[J].Cell, 2012, 148(1-2):126-138.
[3] Fox EP, Bui CK, Nett JE, et al. An expanded regulatory network temporally controls Candida albicans biofilm formation[J]. Mol Microbiol, 2015, 96(6):1226-1239.
[4] Moyes DL, Richardson JP, Naglik JR. Candida albicans-epithelial interactions and pathogenicity mechanisms:scratching the surface[J]. Virulence, 2015, 6(4):338-346.
[5] Finkel JS, Wenjie X, David H, et al. Portrait of Candida albicans adherence regulators[J]. PLoS Pathog, 2012, 8(2):e1002525.
[6] Bastidas RJ, Joseph H, Cardenas ME. The protein kinase Tor1 regulates adhesin gene expression in Candida albicans[J]. PLoS Pathog, 2009, 5(2):e1000294.
[7] Daniels KJ, Srikantha T, Pujol C, et al. Role of Tec1 in the development, architecture, and integrity of sexual biofilms of Candida albicans[J]. Eukaryot Cell, 2015, 14(3):228-240.
[8] Leach MD, Farrer RA, Tan K, et al. Hsf1 and Hsp90 orchestrate temperature-dependent global transcriptional remodelling and chromatin architecture in Candida albicans[J]. Nat Commun, 2016, 7:11704.
[9] Hao B, Clancy CJ, Cheng S, et al. Candida albicans RFX2 encodes a DNA binding protein involved in DNA damage responses, morphogenesis, and virulence[J]. Eukaryot Cell, 2009, 8(4):627-639.
[10] Chen HF, Lan CY. Role of SFP1 in the regulation of Candida albicans biofilm formation[J]. Plos One, 2015, 10(6):e0129903.
[11] Kakade P, Sadhale P, Sanyal K, et al. ZCF32, a fungus specific Zn(II)2 Cys6 transcription factor, is a repressor of the biofilm development in the human pathogen Candida albicans[J]. Scientific Reports, 2016, 6:31124.
[12] Shapiro RS, Nicole R, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease[J]. Microbiol Mol Biol Rev, 2011, 75(2):213-267.
[13] Liu JY, Li WJ, Shi C, et al. Mutations in the Flo8 transcription factor contribute to virulence and phenotypic traits in Candida albicans strains[J]. Microbiol Res, 2015, 178:1-8.
[14] Kyunghun M, Amy B, Deborah A, et al. Genetic analysis of NDT80 family transcription factors in Candida albicans using new CRISPR-Cas9 approaches[J]. mSphere. 2018,3(6):e00545-18.
[15] Sellam A, Askew C, Epp E, et al. Role of transcription factor CaNdt80p in cell separation, hyphal growth, and virulence in Candida albicans[J]. Eukaryot Cell, 2010, 9(4):634-644.
[16] Banerjee M, Uppuluri P, Zhao XR, et al. Expression of UME6, a key regulator of Candida albicans hyphal development, enhances biofilm formation via Hgc1- and Sun41-dependent mechanisms[J]. Eukaryot Cell, 2013,12(2):224-232.
[17] Han D, Guobo G, Jing X, et al. Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence[J]. Plos One, 2012, 7(1):e29707.
[18] Su C, Yu J, Lu Y. Hyphal development in Candida albicans from different cell states[J]. Curr Genet, 2018, 64(6):1239-1243.
[19] Glazier VE, Murante T, Murante D. Genetic analysis of the Candida albicans biofilm transcription factor network using simple and complex haploinsufficiency[J]. Plos Genetics, 2017, 13(8):e1006948.
[20] Cleary IA, Reinhard SM, Lazzell AL, et al. Examination of the pathogenic potential of Candida albicans filamentous cells in an animal model of haematogenously disseminated candidiasis[J]. Fems Yeast Research, 2016, 16(2):fow011.
[21] Cleary IA, Lazzell AL, Monteagudo C. BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence[J]. Mol Microbiol, 2012, 85(3):557-573.
[22] Huang G. Regulation of phenotypic transitions in the fungal pathogen Candida albicans[J]. Virulence, 2012, 3(3):251-261.
[23] Mitchell KF, Zarnowski R, Sanchez H, et al. Community participation in biofilm matrix assembly and function[J]. Proc Natl Acad Sci U S A, 2015, 112(13):4092-4097.
[24] Nobile C J, Nett J E, Hernday A D, et al. Biofilm matrix regulation by Candida albicans Zap1[J]. Plos Biology, 2009, 7(6):e1000133.
[25] Uppuluri P, Chaturvedi AK, Srinivasan A, et al. Dispersion as an important step in the Candida albicans biofilm developmental cycle[J]. PLoS Pathog, 2010, 6(3):e1000828.
[26] Uppuluri P, Zaldívar MA, Anderson MZ, et al. Candida albicans dispersed cells are developmentally distinct from biofilm and planktonic cells[J]. mBio, 2018, 9(4):e01338-18.
[27] Robbins N, Uppuluri P, Nett J, et al. Hsp90 governs dispersion and drug resistance of fungal biofilms[J]. PLoS Pathog, 2011, 7(9):e1002257.
[28] Granger BL. Insight into the antiadhesive effect of yeast wall protein 1 of Candida albicans[J]. Eukaryot Cell, 2012, 11(6):795-805. |