[1] Zhan P, Liu W. The changing face of dermatophytic infections worldwide[J]. Mycopathologia, 2017, 182(1-2):77-86.
[2] Graser Y, Monod M, Bouchara JP, et al. New insights in dermatophyte research[J]. Med Mycol, 2018, 56(suppl_1):2-9.
[3] Rezusta A, de la Fuente S, Gilaberte Y, et al. Evaluation of incubation time for dermatophytes cultures[J]. Mycoses, 2016, 59(7):416-418.
[4] Leclerc MC, Philippe H, Gueho E. Phylogeny of dermatophytes and dimorphic fungi based on large subunit ribosomal RNA sequence comparisons[J]. J Med Vet Mycol, 1994, 32(5):331-341.
[5] Harmsen D, Schwinn A, Weig M, et al. Phylogeny and dating of some pathogenic keratinophilic fungi using small subunit ribosomal RNA[J]. J Med Vet Mycol, 1995, 33(5):299-303.
[6] 刘昕, 马彦. 皮肤癣菌分子生物学鉴定新进展[J]. 中国真菌学杂志, 2014, 9(3):186-188.
[7] Makimura K, Tamura Y, Mochizuki T, et al. Phylogenetic classification and species identification of dermatophyte strains based on DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions[J]. J Clin Microbiol, 1999, 37(4):920-924.
[8] de Hoog GS, Dukik K, Monod M, et al. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes[J]. Mycopathologia, 2017, 182(1-2):5-31.
[9] Faway E, Lambert de Rouvroit C, Poumay Y. In vitro models of dermatophyte infection to investigate epidermal barrier alterations[J]. Exp Dermatol, 2018, 27(8):915-922.
[10] Normand AC, Packeu A, Cassagne C, et al. Nucleotide sequence database comparison for routine dermatophyte identification by Internal Transcribed Spacer 2 genetic region DNA barcoding[J]. J Clin Microbiol, 2018, 56(5).
[11] Mirhendi H, Makimura K, de Hoog GS, et al. Translation elongation factor 1-alpha gene as a potential taxonomic and identification marker in dermatophytes[J]. Med Mycol, 2015, 53(3):215-224.
[12] Sherman S, Goshen M, Treigerman O, et al. Evaluation of multiplex real-time PCR for identifying dermatophytes in clinical samples-A multicentre study[J]. Mycoses, 2018, 61(2):119-126.
[13] Motamedi M, Mirhendi H, Zomorodian K, et al. Clinical evaluation of beta-tubulin real-time PCR for rapid diagnosis of dermatophytosis, a comparison with mycological methods[J]. Mycoses, 2017, 60(10):692-696.
[14] Ahmadi B, Mirhendi H, Makimura K, et al. Phylogenetic analysis of dermatophyte species using DNA sequence polymorphism in calmodulin gene[J]. Med Mycol, 2016, 54(5):500-514.
[15] Garcia Garces H, Cordeiro RT, Bagagli E. PRP8 intein in dermatophytes:evolution and species identification[J]. Med Mycol, 2018, 56(6):746-758.
[16] Prusinkiewicz MA, Farazkhorasani F, Dynes JJ, et al. Proof-of-principle for SERS imaging of Aspergillus nidulans hyphae using in vivo synthesis of gold nanoparticles[J]. Analyst, 2012, 137(21):4934-4942.
[17] Witkowska E, Jagielski T, Kaminska A. Genus- and species-level identification of dermatophyte fungi by surface-enhanced raman spectroscopy[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2018, 192:285-290.
[18] 黎晓丽, 赖维. 头发为底物诱导不同真菌产生角蛋白酶活性的比较. 2010.
[19] Chinnapun D. Virulence factors involved in pathogenicity of dermatophytes[J]. Walailak J Sci Technol, 2015, 12(7):573-580.
[20] Heinen MP, Cambier L, Fievez L, et al. Are Th17 cells playing a role in immunity to dermatophytosis[J]? Mycopathologia, 2017, 182(1-2):251-261.
[21] Heinen MP, Cambier L, Antoine N, et al. Th1 and Th17 immune responses act complementarily to optimally control superficial dermatophytosis[J]. J Investig Dermatol Symp Proc, 2019, 139(3):626-637.
[22] Hau CS, Tada Y, Kanda N, et al. Immunoresponses in dermatomycoses[J]. J Investig Dermatol Symp Proc, 2015, 42(3):236-244.
[23] Warner RL, Bhagavathula N, Nerusu KC, et al. Matrix metalloproteinases in acute inflammation:induction of MMP-3 and MMP-9 in fibroblasts and epithelial cells following exposure to pro-inflammatory mediators in vitro[J]. Exp Mol Pathol, 2004, 76(3):189-195.
[24] Kitisin T, Luplertlop N. Induction by Epidermophyton floccosum of human fibroblast matrix metalloproteinase-9 secretion in vitro[J]. Southeast Asian J trop Med public health, 2015, 46(2):268-275.
[25] Garcia-Romero MT, Arenas R. New insights into genes, immunity, and the occurrence of dermatophytosis[J]. J Investig Dermatol Symp Proc, 2015, 135(3):655-657.
[26] Tambor JH, Guedes RF, Nobrega MP, et al. The complete DNA sequence of the mitochondrial genome of the dermatophyte fungus Epidermophyton floccosum[J]. Curr Genet, 2006, 49(5):302-308.
[27] Wu Y, Yang J, Yang F, et al. Recent dermatophyte divergence revealed by comparative and phylogenetic analysis of mitochondrial genomes[J]. BMC Genomics, 2009, 10:238.
[28] Abdel-Rahman SM. Genetic predictors of susceptibility to dermatophytoses[J]. Mycopathologia, 2017, 182(1-2):67-76.
[29] Ferwerda B, Ferwerda G, Plantinga TS, et al. Human dectin-1 deficiency and mucocutaneous fungal infections[J]. N Engl J Med, 2009, 361(18):1760-1767.
[30] Jaradat SW, Cubillos S, Krieg N, et al. Low DEFB4 copy number and high systemic hBD-2 and IL-22 levels are associated with dermatophytosis[J]. J Investig Dermatol Symp Proc, 2015, 135(3):750-758.
[31] Engelhardt KR, Grimbacher B. Mendelian traits causing susceptibility to mucocutaneous fungal infections in human subjects[J]. J Allergy Clin Immunol Pract, 2012, 129(2):294-305; quiz 306-297.
[32] Vaezi A, Fakhim H, Abtahian Z, et al. Frequency and geographic distribution of CARD9 mutations in patients with severe fungal infections[J]. Front Microbiol, 2018, 9:2434.
[33] Zamani S, Sadeghi G, Yazdinia F, et al. Epidemiological trends of dermatophytosis in Tehran, Iran:A five-year retrospective study[J]. J Mycol Med, 2016, 26(4):351-358.
[34] Nweze EI, Eke IE. Dermatophytes and dermatophytosis in the eastern and southern parts of Africa[J]. Med Mycol, 2018, 56(1):13-28.
[35] Coulibaly O, L'Ollivier C, Piarroux R, et al. Epidemiology of human dermatophytoses in Africa[J]. Med Mycol, 2018, 56(2):145-161.
[36] Maraki S, Mavromanolaki VE. Epidemiology of dermatophytoses in Crete, Greece[J]. Med Mycol, 2016, 57(4):E69-e75.
[37] Heidrich D, Garcia MR, Stopiglia CD, et al. Dermatophytosis:a 16-year retrospective study in a metropolitan area in southern Brazil[J]. J Infect Dev Ctries, 2015, 9(8):865-871.
[38] Badali H, Mohammadi R, Mashedi O, et al. In vitro susceptibility patterns of clinically important Trichophyton and Epidermophyton species against nine antifungal drugs[J]. Mycoses, 2015, 58(5):303-307.
[39] Martinez-Rossi NM, Bitencourt TA, Peres NTA, et al. Dermatophyte resistance to antifungal drugs:mechanisms and prospectus[J]. Front Microbiol, 2018, 9:1108.
[40] McCarthy MW, Kontoyiannis DP, Cornely OA, et al. Novel agents and drug targets to meet the challenges of resistant fungi[J]. J Infect Dis, 2017, 216(suppl_3):S474-s483.
[41] Marrilow AGS, Hull CM, Parker JE, et al. The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme[J]. Antimicrob Agents Chemother (Bethesda), 2014, 58(12):7121-7127.
[42] Garvey EP, Hoekstra WJ, Moore WR, et al. VT-1161 dosed once daily or once weekly exhibits potent efficacy in treatment of dermatophytosis in a guinea pig model[J]. Antimicrob Agents Chemother (Bethesda), 2015, 59(4):1992-1997.
[43] Prasad S, Gupta SC, Tyagi AK, et al. Curcumin, a component of golden spice:from bedside to bench and back[J]. Biotechnol Adv, 2014, 32(6):1053-1064.
[44] Brasch J, Freitag-Wolf S, Beck-Jendroschek V, et al. Inhibition of dermatophytes by photodynamic treatment with curcumin[J]. Med Mycol, 2017, 55(7):754-762.
[45] Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease[J]. Physiol Rev, 2007, 87(1):315-424.
[46] Stasko N, McHale K, Hollenbach SJ, et al. Nitric oxide-releasing macromolecule exhibits broad-spectrum antifungal activity and utility as a topical treatment for superficial fungal infections[J]. Antimicrob Agents Chemother (Bethesda), 2018, 62(7).
[47] Zhang J, Tan J, Yang L, et al. Tacrolimus, not triamcinolone acetonide, interacts synergistically with itraconazole, terbinafine, bifonazole, and amorolfine against clinical dermatophyte isolates[J]. J Mycol Med, 2018, 28(4):612-616.
[48] Furmanek L, Czarnota P, Seaward MRD. Antifungal activity of lichen compounds against dermatophytes:a review[J]. J Appl Microbiol, 2019,127(2):308-325
[49] Mahboubi M, HeidaryTabar R, Mahdizadeh E. The anti-dermatophyte activity of Zataria multiflora essential oils[J]. J Mycol Med, 2017, 27(2):232-237. |