[1] Kolaczkowska A, Kolaczkowski M. Drug resistance mechanisms and their regulation in non-albicans Candida species[J]. J Antimicrob Chemother, 2016,71(6):1438-1450.
[2] Kothavade RJ, Kura MM, Valand AG, et al. Candida tropicalis:its prevalence, pathogenicity and increasing resistance to fluconazole[J]. J Med Microbiol, 2010,59(Pt 8):873-880.
[3] Quindós G. Epidemiology of candidaemia and invasive candidiasis. A changing face[J]. Rev Iberoam Micol, 2014,31(1):42-48.
[4] Chakrabarti A, Chatterjee SS, Rao KLN, et al. Recent experience with fungaemia:change in species distribution and azole resistance[J]. Scand J Infect Dis, 2009, 41(4):275-284.
[5] Negri M, Silva S, Henriques M, et al. Insights into Candida tropicalis nosocomial infections and virulence factors[J]. Eur J Clin Microbiol Infect Dis, 2012,31(7):1399-1412.
[6] Pappas PG, Kauffman CA, Andes DR, et al. Clinical practice guideline for the management of candidiasis:2016 update by the Infectious Diseases Society of America[J]. Clin Infect Dis, 2016, 62(4):e1-50.
[7] Cornely OA, Bassetti M, Calandra T, et al. ESCMID guideline for the diagnosis and management of Candida diseases 2012:Non-neutropenic adult patients[J]. Clin Microbiol Infect, 2012, 18(s7):19-37.
[8] Castanheira M, Messer SA, Rhomberg PR, et al. Antifungal susceptibility patterns of a global collection of fungal isolates:results of the SENTRY Antifungal Surveillance Program (2013)[J]. Diagn Microbiol Infect Dis, 2016,85(2):200-204.
[9] Flowers SA, Brendan C, Whaley SG, et al. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans[J]. Antimicrob Agents Chemother, 2015, 59(1):450-460.
[10] Vandeputte P, Larcher G, Berges T, et al. Mechanisms of azole resistance in a clinical isolate of Candida tropicalis[J]. Antimicrob Agents Chemother, 2005, 49(11):4608-4615.
[11] Jiang C, Dong DF, Yu B, et al. Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China[J]. J Antimicrob Chemother, 2013,68(4):778-785.
[12] Heilmann CJ, Schneider S, Barker KS, et al. An A643T mutation in the transcription factor Upc2p causes constitutive ERG11 upregulation and increased fluconazole resistance in Candida albicans[J]. Antimicrob Agents Chemother, 2010, 54(1):353-359.
[13] Jin LY, Cao ZR, Wang Q, et al. MDR1 overexpression combined with ERG11 mutations induce high-level fluconazole resistance in Candida tropicalis clinical isolates[J]. BMC Infect Dis, 2018,18(1):162.
[14] Xiang MJ, Liu JY, Ni PH, et al. Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans[J]. FEMS Yeast Res, 2013,13(4):386-393.
[15] Choi YJ, Kim YJ, Yong D, et al. Fluconazole-resistant Candida parapsilosis bloodstream isolates with Y132F mutation in ERG11 gene, South Korea[J]. Emerg Infect Dis, 2018,24(9):1768-1770.
[16] Selb R, Fuchs V, Graf B, et al. Molecular typing and in vitro resistance of Cryptococcus neoformans clinical isolates obtained in Germany between 2011 and 2017[J]. Int J Med Microbiol, 2019,309(6):151336.
[17] Castanheira M, Deshpande LM, Messer SA, et al. Analysis of global antifungal surveillance results reveals predominance of Erg11 Y132F alteration among azole-resistant Candida parapsilosis and Candida tropicalis and country-specific isolate dissemination[J]. Int J Antimicrob Agents, 2019, S0924-8579(19):30246-30248.
[18] Xisto MI, Caramalho RD, Rocha DA, et al. Pan-azole-resistant Candida tropicalis carrying homozygous erg11 mutations at position K143R:a new emerging superbug[J]? J Antimicrob Chemother, 2017,72(4):988-992.
[19] Fan X, Xiao M, Zhang D, et al. Molecular mechanisms of azole resistance in Candida tropicalis isolates causing invasive candidiasis in China[J]. Clin Microbiol Infect, 2019,25(7):885-891. |