[1] Babior BM. NADPH oxidase[J]. Curr Opin Immunol,2004,16(1):42-47.
[2] Phillips AJ, Sudbery I, Ramsdale M. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans[J]. Proc Natl Acad Sci U S A,2003,100(24):14327-14332.
[3] Halliwell B. Oxidative stress and cancer:have we moved forward[J]. Biochem J,2007,401(1):1-11.
[4] Brown AJ, Haynes K, Quinn J. Nitrosative and oxidative stress responses in fungal pathogenicity[J]. Curr Opin Microbiol,2009,12(4):384-391.
[5] Fang FC. Antimicrobial reactive oxygen and nitrogen species:concepts and controversies[J]. Nat Rev Microbiol,2004,2(10):820-832.
[6] Enjalbert B, Nantel A, Whiteway M. Stress-induced gene expression in Candida albicans:absence of a general stress response[J]. Mol Biol Cell,2003,14(4):1460-1467.
[7] Enjalbert B, Smith DA, Cornell MJ, et al. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans[J]. Mol Biol Cell,2006,17(2):1018-1032.
[8] Reeves EP, Lu H, Jacobs HL, et al. Killing activity of neutrophils is mediated through activation of proteases by K+ flux[J]. Nature,2002,416(6878):291-297.
[9] Steinberg BE, Huynh KK, Grinstein S. Phagosomal acidification:measurement, manipulation and functional consequences[J]. Biochem Soc Trans,2007,35(Pt 5):1083-1087.
[10] Kaloriti D, Jacobsen M, Yin Z, et al. Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes[J]. MBio,2014,5(4):e01334-01314.
[11] Hwang CS, Rhie GE, Oh JH, et al. Copper-and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence[J]. Microbiology,2002,148(Pt 11):3705-3713.
[12] Lorenz MC, Bender JA, Fink GR. Transcriptional response of Candida albicans upon internalization by macrophages[J]. Eukaryot Cell,2004,3(5):1076-1087.
[13] Lewis LE, Bain JM, Okai B, et al. Live-cell video microscopy of fungal pathogen phagocytosis[J]. J Vis Exp,2013,(71).
[14] Jiménez-López C, Collette JR, Brothers KM, et al. Candida albicans induces arginine biosynthetic genes in response to host-derived reactive oxygen species[J]. Eukaryot Cell,2013,12(1):91-100.
[15] Toone WM, Morgan BA, Jones N. Redox control of AP-1-like factors in yeast and beyond[J]. Oncogene,2001,20(19):2336-2346.
[16] Alarco AM, Raymond M. The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans[J]. J Bacteriol,1999,181(3):700-708.
[17] Zhang X, De Micheli M, Coleman ST, et al. Analysis of the oxidative stress regulation of the Candida albicans transcription factor, Cap1p[J]. Mol Microbiol,2000,36(3):618-629.
[18] Znaidi S, Barker KS, Weber S, et al. Identification of the Candida albicans Cap1p regulon[J]. Eukaryot Cell,2009,8(6):806-820.
[19] Patterson MJ, McKenzie CG, Smith DA, et al. Ybp1 and Gpx3 signaling in Candida albicans govern hydrogen peroxide-induced oxidation of the Cap1 transcription factor and macrophage escape[J]. Antioxid Redox Signal,2013,19(18):2244-2260.
[20] da SDA, Patterson MJ, Smith DA, et al. Thioredoxin regulates multiple hydrogen peroxide-induced signaling pathways in Candida albicans[J]. Mol Cell Biol,2010,30(19):4550-4563.
[21] Veal EA, Ross SJ, Malakasi P, et al. Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor[J]. J Biol Chem,2003,278(33):30896-30904.
[22] Wysong DR, Christin L, Sugar AM, et al. Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene[J]. Infect Immun,1998,66(5):1953-1961.
[23] Smith DA, Morgan BA, Quinn J. Stress signalling to fungal stress-activated protein kinase pathways[J]. FEMS Microbiol Lett,2010,306(1):1-8.
[24] Alonso-Monge R, Navarro-García F, Román E, et al. The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans[J]. Eukaryot Cell,2003,2(2):351-361.
[25] Smith DA, Nicholls S, Morgan BA, et al. A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans[J]. Mol Biol Cell,2004,15(9):4179-4190.
[26] Alonso-Monge R, Navarro-García F, Molero G, et al. Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans[J]. J Bacteriol,1999,181(10):3058-3068.
[27] Cheetham J, MacCallum DM, Doris KS, et al. MAPKKK-independent regulation of the Hog1 stress-activated protein kinase in Candida albicans[J]. J Biol Chem,2011,286(49):42002-42016.
[28] Prieto D, Román E, Correia I, et al. The HOG pathway is critical for the colonization of the mouse gastrointestinal tract by Candida albicans[J]. PLoS One,2014,9(1):e87128.
[29] Arana DM, Alonso-Monge R, Du C, et al. Differential susceptibility of mitogen-activated protein kinase pathway mutants to oxidative-mediated killing by phagocytes in the fungal pathogen Candida albicans[J]. Cell Microbiol,2007,9(7):1647-1659.
[30] Shi QM, Wang YM, Zheng XD, et al. Critical role of DNA checkpoints in mediating genotoxic-stress-induced filamentous growth in Candida albicans[J]. Mol Biol Cell,2007,18(3):815-826.
[31] Shockley AH, Doo DW, Rodriguez GP, et al. Oxidative damage and mutagenesis in Saccharomyces cerevisiae:genetic studies of pathways affecting replication fidelity of 8-oxoguanine[J]. Genetics,2013,195(2):359-367.
[32] Leroy C, Mann C, Marsolier MC. Silent repair accounts for cell cycle specificity in the signaling of oxidative DNA lesions[J]. EMBO J,2001,20(11):2896-2906.
[33] Wilson D, Tutulan-Cunita A, Jung W, et al. Deletion of the high-affinity cAMP phosphodiesterase encoded by PDE2 affects stress responses and virulence in Candida albicans[J]. Mol Microbiol,2007,65(4):841-856.
[34] Deveau A, Piispanen AE, Jackson AA, et al. Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway[J]. Eukaryot Cell,2010,9(4):569-577. |