[1] Chau AS, Mendrick CA, Sabatelli FJ, et al. Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles[J].Antimicrob Agents Chemother,2004,48(6):2124-2131. [2] Eddouzi J, Parker JE, Vale-Silva LA, et al. Molecular Mechanisms of Drug Resistance in Clinical Candida Species Isolated from Tunisian Hospitals[J].Antimicrob Agents Chemother, 2013, 57(7): 3182-3193. [3] Chandra J, Kuhn DM, Mukherjee PK, et al. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance[J].J Bacteriol, 2001, 183(18): 5385-5394. [4] Cowen LE, Lindquist S. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi[J]. Science, 2005, 309(5744): 2185-2189. [5] Coste A, Turner V, Ischer F, et al. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans[J]. Genetics, 2006, 172(4): 2139-2156. [6] Liu TT, Znaidi S, Barker KS, et al. Genome-wide expression and location analyses of the Candida albicans Tac1p regulon[J]. Eukaryotic cell, 2007, 6(11): 2122-2138. [7] Coste AT, Crittin J, Bauser C, et al. Functional analysis of cis-and trans-acting elements of the Candida albicans CDR2 promoter with a novel promoter reporter system[J]. Eukaryotic cell, 2009, 8(8): 1250-1267. [8] Morio F, Pagniez F, Besse M, et al. Deciphering azole resistance mechanisms with a focus on transcription factor-encoding genes TAC1, MRR1 and UPC2 in a set of fluconazole-resistant clinical isolates of Candida albicans[J].Int J Antimicrob Agents, 2013, 42(5): 410-415. [9] Rustad TR, Stevens DA, Pfaller MA, et al. Homozygosity at the Candida albicans MTL locus associated with azole resistance[J]. Microbiology, 2002, 148(4): 1061-1072. [10] Coste A, Selmecki A, Forche A, et al. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates[J]. Eukaryotic cell, 2007, 6(10): 1889-1904. [11] Selmecki A, Gerami-Nejad M, Paulson C, et al. An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1[J].Mol Microbiol, 2008, 68(3): 624-641. [12] Chen CG, Yang YL, Shih HI, et al. CaNdt80 is involved in drug resistance in Candida albicans by regulating CDR1[J].Antimicrob Agents Chemother, 2004, 48(12): 4505-4512. [13] Sellam A, Tebbji F, Nantel A. Role of Ndt80p in sterol metabolism regulation and azole resistance in Candida albicans[J]. Eukaryotic cell, 2009, 8(8): 1174-1183. [14] Sellam A, Askew C, Epp E, et al. Role of transcription factor CaNdt80p in cell separation, hyphal growth, and virulence in Candida albicans[J]. Eukaryotic cell, 2010, 9(4): 634-644. [15] Sasse C, Schillig R, Dierolf F, et al. The transcription factor Ndt80 does not contribute to Mrr1-, Tac1-, and Upc2-mediated fluconazole resistance in Candida albicans[J]. PloS one, 2011, 6(9): e25623. [16] Wang JS, Yang YL, Wu CJ, et al. The DNA-binding domain of CaNdt80p is required to activate CDR1 involved in drug resistance in Candida albicans[J].J Med Microbiol, 2006, 55(10): 1403-1411. [17] Yang YL, Wang CW, Leaw SN, et al. R432 is a key residue for the multiple functions of Ndt80p in Candida albicans[J]. Cellular and Molecular Life Sciences, 2012, 69(6): 1011-1023. [18] Schillig R, Morschhuser J. Analysis of a fungus-specific transcription factor family, the Candida albicans zinc cluster proteins, by artificial activation[J]. Mol Microbiol, 2013, 89(5): 1003-1017. [19] MacPherson S, Akache B, Weber S, et al. Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes[J].Antimicrob Agents Chemother, 2005, 49(5): 1745-1752. [20] Oliver BG, Song JL, Choiniere JH, et al. cis-Acting elements within the Candida albicans ERG11 promoter mediate the azole response through transcription factor Upc2p[J]. Eukaryotic cell, 2007, 6(12): 2231-2239. [21] Heilmann CJ, Schneider S, Barker KS, et al. An A643T mutation in the transcription factor Upc2p causes constitutive ERG11 upregulation and increased fluconazole resistance in Candida albicans[J].Antimicrob Agents Chemother, 2010, 54(1): 353-359. [22] Dunkel N, Liu TT, Barker KS, et al. A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate[J]. Eukaryotic cell, 2008, 7(7):1180-1190. [23] Hoot SJ, Smith AR, Brown RP, et al. An A643V amino acid substitution in Upc2p contributes to azole resistance in well-characterized clinical isolates of Candida albicans[J].Antimicrob Agents Chemother, 2011, 55(2): 940-942. [24]Flowers SA, Barker KS, Berkow EL, et al. Gain of function mutations in UPC 2 are a frequent cause of ERG 11 upregulation in azole resistant clinical isolates of Candida albicans [J]. Eukaryotic cell, 2012, 11(10): 1289-1299. [25]Znaidi S, Weber S, Al Abdin OZ, et al. Genomewide location analysis of Candida albicans Upc2p, a regulator of sterol metabolism and azole drug resistance[J]. Eukaryotic cell, 2008, 7(5): 836-847. [26]Dunkel N, Bla J, Rogers PD, et al. Mutations in the multi drug resistance regulator MRR 1, followed by loss of heterozygosity, are the main cause of MDR 1 overexpression in fluconazole resistant Candida albicans strains[J]. Molecular microbiology, 2008, 69(4): 827-840. [27]Morschhuser J, Barker KS, Liu TT, et al. The transcription factor Mrr1p controls expression of the MDR 1 efflux pump and mediates multidrug resistance in Candida albicans [J]. PLoS pathogens, 2007, 3(11): e164. [28]Alarco AM, Raymond M. The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans [J].J Bacteriol,1999,181(3):700-708. [29]Riggle PJ, Kumamoto CA. Transcriptional regulation of MDR 1, encoding a drug efflux determinant, in fluconazole resistant Candida albicans strains through an Mcm1p binding site[J]. Eukaryotic cell, 2006, 5(12): 1957-1968. [30]Mogavero S, Tavanti A, Senesi S, et al. Differential requirement of the transcription factor Mcm1 for activation of the Candida albicans multidrug efflux pump MDR 1 by its regulators Mrr1 and Cap1[J]. Antimicrobial agents and chemotherapy, 2011, 55(5): 2061-2066. [31]Askew C, Sellam A, Epp E, et al. The zinc cluster transcription factor Ahr1p directs Mcm1p regulation of Candida albicans adhesion[J]. Molecular microbiology, 2011, 79(4): 940-953. [32]Schubert S, Barker KS, Znaidi S, et al. Regulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 in Candida albicans [J]. Antimicrobial agents and chemotherapy, 2011, 55(5): 2212-2223. |