[1] Monge RA, Roman E, Nombela C, et al. The MAP kinase signal transduction network in Candida albicans[J]. Microbiology,2006,152(Pt 4):905-912. [2] Chauhan N, Calderone R. Two-component signal transduction proteins as potential drug targets in medically important fungi[J]. Infect Immun,2008,76(11):4795-4803. [3] Cheetham J, Maccallum DM, Doris KS, et al. MAPKKK-independent regulation of the Hog1 stress-activated protein kinase in Candida albicans[J]. J Biol Chem,2011,286(49):42002-42016. [4] Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts[J]. Microbiol Mol Biol Rev,2002,66(2):300-372. [5] Kayingo G, Wong B. The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and D-arabitol in Candida albicans[J]. Microbiology,2005,151(Pt 9):2987-2999. [6] Vylkova S, Jang WS, Li W, et al. Histatin 5 initiates osmotic stress response in Candida albicans via activation of the Hog1 mitogen-activated protein kinase pathway[J]. Eukaryot Cell,2007,6(10):1876-1888. [7] Robbins N, Uppuluri P, Nett J, et al. Hsp90 governs dispersion and drug resistance of fungal biofilms[J]. PLoS Pathog,2011,7(9):e1002257. [8] de Dios CH, Roman E, Monge RA, et al. The role of MAPK signal transduction pathways in the response to oxidative stress in the fungal pathogen Candida albicans: implications in virulence[J]. Curr Protein Pept Sci,2010,11(8):693-703. [9] Kelly J, Rowan R, Mccann M, et al. Exposure to caspofungin activates Cap and Hog pathways in Candida albicans[J]. Med Mycol,2009,47(7):697-706. [10] Gonzalez-Parraga P, Alonso-Monge R, Pla J, et al. Adaptive tolerance to oxidative stress and the induction of antioxidant enzymatic activities in Candida albicans are independent of the Hog1 and Cap1-mediated pathways[J]. FEMS Yeast Res,2010,10(6):747-756. [11] 陈裕充,温海,高平挥,等. MAPK转导通路在白念珠菌菌体抗氧化应激中的作用[J]. 中国真菌学杂志,2009,4(3):137-139. [12] Whiteway M, Oberholzer U. Candida morphogenesis and host-pathogen interactions[J]. Curr Opin Microbiol,2004,7(4):350-357. [13] Alonso-Monge R, Navarro-Garcia F, Molero G, et al. Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans[J]. J Bacteriol,1999,181(10):3058-3068. [14] Alonso-Monge R, Carvaihlo S, Nombela C, et al. The Hog1 MAP kinase controls respiratory metabolism in the fungal pathogen Candida albicans[J]. Microbiology,2009,155(Pt 2):413-423. [15] Alonso-Monge R, Real E, Wojda I, et al. Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects[J]. Mol Microbiol,2001,41(3):717-730. [16] Lee CM, Nantel A, Jiang L, et al. The serine/threonine protein phosphatase SIT4 modulates yeast-to-hypha morphogenesis and virulence in Candida albicans[J]. Mol Microbiol,2004,51(3):691-709. [17] Arana DM, Nombela C, Alonso-Monge R, et al. The Pbs2 MAP kinase kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans[J]. Microbiology,2005,151(Pt 4):1033-1049. [18] Navarro-Garcia F, Eisman B, Fiuza S M, et al. The MAP kinase Mkc1p is activated under different stress conditions in Candida albicans[J]. Microbiology,2005,151(Pt 8):2737-2749. [19] Shapiro RS, Uppuluri P, Zaas AK, et al. Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling[J]. Curr Biol,2009,19(8):621-629. [20] Lafayette SL, Collins C, Zaas AK, et al. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90[J]. PLoS Pathog,2010,6(8):e1001069. [21] Leach MD, Budge S, Walker L, et al. Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast[J]. PLoS Pathog,2012,8(12):e1003069. [22] Bates S, Maccallum D M, Bertram G, et al. Candida albicans Pmr1p, a secretory pathway P-type Ca2+/Mn2+-ATPase, is required for glycosylation and virulence[J]. J Biol Chem,2005,280(24):23408-23415. [23] Whiteway M, Dignard D, Thomas DY. Dominant negative selection of heterologous genes: isolation of Candida albicans genes that interfere with Saccharomyces cerevisiae mating factor-induced cell cycle arrest[J]. Proc Natl Acad Sci USA,1992,89(20):9410-9414. [24] Roman E, Nombela C, Pla J. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans[J]. Mol Cell Biol,2005,25(23):10611-10627. [25] Eisman B, Alonso-Monge R, Roman E, et al. The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans[J]. Eukaryot Cell,2006,5(2):347-358. [26] Roman E, Cottier F, Ernst JF, et al. Msb2 signaling mucin controls activation of Cek1 mitogen-activated protein kinase in Candida albicans[J]. Eukaryot Cell,2009,8(8):1235-1249. [27] Roman E, Alonso-Monge R, Gong Q, et al. The Cek1 MAPK is a short-lived protein regulated by quorum sensing in the fungal pathogen Candida albicans[J]. FEMS Yeast Res,2009,9(6):942-955. [28] Mayer FL, Wilson D, Jacobsen ID, et al. Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans[J]. PLoS One,2012,7(6):e38584. [29] Herrero DDC, Roman E, Diez C, et al. The transmembrane protein Opy2 mediates activation of the Cek1 MAP kinase in Candida albicans[J]. Fungal Genet Biol,2013,50:21-32. [30] Szafranski-Schneider E, Swidergall M, Cottier F, et al. Msb2 shedding protects Candida albicans against antimicrobial peptides[J]. PLoS Pathog,2012,8(2):e1002501. [31] Srinivasa K, Kim J, Yee S, et al. A MAP kinase pathway is implicated in the pseudohyphal induction by hydrogen peroxide in Candida albicans[J]. Mol Cells,2012,33(2):183-193. [32] Chen J, Wang Q, Chen J Y. CEK2, a Novel MAPK from Candida albicans Complement the Mating Defect of fus3/kss1 Mutant[J]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai),2000,32(3):299-304. [33] 陈静,陈江野. CEK2和CSK1基因的敲除对白色念珠菌形态的影响[J]. 实验生物学报,2001,34(1):25-33. |