[1] Pittet D, Li N, Woolson R F, et al. Microbiological factors influencing the outcome of nosocomial bloodstream infections: a 6-year validated, population-based model[J]. Clin Infect Dis, 1997,24(6):1068-1078. [2] Gudlaugsson O, Gillespie S, Lee K, et al. Attributable mortality of nosocomial candidemia, revisited[J]. Clin Infect Dis, 2003,37(9):1172-1177. [3] Hajjeh R A, Sofair A N, Harrison L H, et al. Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program[J]. J Clin Microbiol, 2004,42(4):1519-1527. [4] Wisplinghoff H, Bischoff T, Tallent S M, et al. Nosocomial bloodstream infections in US hospitals:analysis of 24,179 cases from a prospective nationwide surveillance study[J]. Clin Infect Dis, 2004,39(3):309-317. [5] Odds FC. Molecular phylogenetics and epidemiology of Candida albicans[J]. Future Microbiol, 2010,5(1):67-79. [6] Bougnoux ME, Tavanti A, Bouchier C, et al. Collaborative consensus for optimized multilocus sequence typing of Candida albicans[J]. J Clin Microbiol, 2003,41(11):5265-5266. [7] Chowdhary A, Lee-Yang W, Lasker B A, et al. Comparison of multilocus sequence typing and Ca3 fingerprinting for molecular subtyping epidemiologically-related clinical isolates of Candida albicans[J]. Med Mycol, 2006,44(5):405-417. [8] Garcia-Hermoso D, Cabaret O, Lecellier G, et al. Comparison of microsatellite length polymorphism and multilocus sequence typing for DNA-Based typing of Candida albicans[J]. J Clin Microbiol, 2007,45(12):3958-3963. [9] Odds FC, Jacobsen M D. Multilocus sequence typing of pathogenic Candida species[J]. Eukaryot Cell, 2008,7(7):1075-1084. [10] Tavanti A, Davidson A D, Fordyce M J, et al. Population structure and properties of Candida albicans, as determined by multilocus sequence typing[J]. J Clin Microbiol, 2005,43(11):5601-5613. [11] MacCallum D M, Castillo L, Nather K, et al. Property differences among the four major Candida albicans strain clades[J]. Eukaryot Cell, 2009,8(3):373-387. [12] Da MD, Melo A S, Colombo A L, et al. Candidemia surveillance in Brazil: evidence for a geographical boundary defining an area exhibiting an abatement of infections by Candida albicans group 2 strains[J]. J Clin Microbiol, 2010,48(9):3062-3067. [13] Pujol C, Pfaller M, Soll D R. Ca3 fingerprinting of Candida albicans bloodstream isolates from the United States, Canada, South America, and Europe reveals a European clade[J]. J Clin Microbiol, 2002,40(8):2729-2740. [14] Ge S H, Xie J, Xu J, et al. Prevalence of specific and phylogenetically closely related genotypes in the population of Candida albicans associated with genital candidiasis in China[J]. Fungal Genet Biol, 2012,49(1):86-93. [15] Cliff P R, Sandoe J A, Heritage J, et al. Use of multilocus sequence typing for the investigation of colonisation by Candida albicans in intensive care unit patients[J]. J Hosp Infect, 2008,69(1):24-32. [16] Asticcioli S, Nucleo E, Perotti G, et al. Candida albicans in a neonatal intensive care unit: antifungal susceptibility and genotypic analysis[J]. New Microbiol, 2007,30(3):303-307. [17] Bougnoux M E, Diogo D, Francois N, et al. Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract[J]. J Clin Microbiol, 2006,44(5):1810-1820. [18] Dalle F, Franco N, Lopez J, et al. Comparative genotyping of Candida albicans bloodstream and nonbloodstream isolates at a polymorphic microsatellite locus[J]. J Clin Microbiol, 2000,38(12):4554-4559. [19] Gong Y B, Zheng J L, Jin B, et al. Particular Candida albicans strains in the digestive tract of dyspeptic patients, identified by multilocus sequence typing[J]. PLoS One, 2012,7(4):e35311. [20] Dodgson A R, Dodgson K J, Pujol C, et al. Clade-specific flucytosine resistance is due to a single nucleotide change in the FUR1 gene of Candida albicans[J]. Antimicrob Agents Chemother, 2004,48(6):2223-2227. [21] Ge S H, Wan Z, Li J, et al. Correlation between azole susceptibilities, genotypes, and ERG11 mutations in Candida albicans isolates associated with vulvovaginal candidiasis in China[J]. Antimicrob Agents Chemother, 2010,54(8):3126-3131. [22] Leenders A C, van Belkum A, Behrendt M, et al. Density and molecular epidemiology of Aspergillus in air and relationship to outbreaks of Aspergillus infection[J]. J Clin Microbiol, 1999,37(6):1752-1757. [23] Andriole V T. Infections with Aspergillus species[J]. Clin Infect Dis, 1993,17 Suppl 2:S481-S486. [24] Vanhee L M, Symoens F, Jacobsen M D, et al. Comparison of multiple typing methods for Aspergillus fumigatus [J]. Clin Microbiol Infect, 2009,15(7):643-650. [25] Balajee S A, Tay S T, Lasker B A, et al. Characterization of a novel gene for strain typing reveals substructuring of Aspergillus fumigatus across North America[J]. Eukaryot Cell, 2007,6(8):1392-1399. [26] Klaassen C H. MLST versus microsatellites for typing Aspergillus fumigatus isolates[J]. Med Mycol, 2009,47 Suppl 1:S27-S33. [27] Bart-Delabesse E, Humbert J F, Delabesse E, et al. Microsatellite markers for typing Aspergillus fumigatus isolates[J]. J Clin Microbiol, 1998,36(9):2413-2418. [28] de Valk H A, Meis J F, Curfs I M, et al. Use of a novel panel of nine short tandem repeats for exact and high-resolution fingerprinting of Aspergillus fumigatus isolates[J]. J Clin Microbiol, 2005,43(8):4112-4120. [29] Bain J M, Tavanti A, Davidson A D, et al. Multilocus sequence typing of the pathogenic fungus Aspergillus fumigatus [J]. J Clin Microbiol, 2007,45(5):1469-1477. [30] Bart-Delabesse E, Cordonnier C, Bretagne S. Usefulness of genotyping with microsatellite markers to investigate hospital-acquired invasive aspergillosis[J]. J Hosp Infect, 1999,42(4):321-327. [31] Guinea J, Garcia D V D, Pelaez T, et al. Molecular epidemiology of Aspergillus fumigatus : an in-depth genotypic analysis of isolates involved in an outbreak of invasive aspergillosis[J]. J Clin Microbiol, 2011,49(10):3498-3503. [32] Lair-Fulleringer S, Guillot J, Desterke C, et al. Differentiation between isolates of Aspergillus fumigatus from breeding turkeys and their environment by genotyping with microsatellite markers[J]. J Clin Microbiol, 2003,41(4):1798-1800. [33] Vanhee L M, Symoens F, Bouchara J P, et al. High-resolution genotyping of Aspergillus fumigatus isolates recovered from chronically colonised patients with cystic fibrosis[J]. Eur J Clin Microbiol Infect Dis, 2008,27(10):1005-1007. [34] Bertout S, Renaud F, Barton R, et al. Genetic polymorphism of Aspergillus fumigatus in clinical samples from patients with invasive aspergillosis: investigation using multiple typing methods[J]. J Clin Microbiol, 2001,39(5):1731-1737. [35] Vanhee L M, Symoens F, Nelis H J, et al. Microsatellite typing of Aspergillus fumigatus isolates recovered from deep organ samples of patients with invasive aspergillosis[J]. Diagn Microbiol Infect Dis, 2008,62(1):96-98. [36] Howard S J, Cerar D, Anderson M J, et al. Frequency and evolution of Azole resistance in Aspergillus fumigatus associated with treatment failure[J]. Emerg Infect Dis, 2009,15(7):1068-1076. [37] Mortensen K L, Jensen R H, Johansen H K, et al. Aspergillus species and other molds in respiratory samples from patients with cystic fibrosis: a laboratory-based study with focus on Aspergillus fumigatus azole resistance[J]. J Clin Microbiol, 2011,49(6):2243-2251. [38] Camps S M, Rijs A J, Klaassen C H, et al. Molecular epidemiology of Aspergillus fumigatus isolates harboring the TR34/L98H azole resistance mechanism[J]. J Clin Microbiol, 2012,50(8):2674-2680. [39] 唐梦丹, 郑建峰, 赵敬军. 我国不同地域烟曲霉临床分离株基因型及其药物敏感性研究: 2013全国中西医结合皮肤性病学术年会, 中国福建厦门[C], 2013. [40] Gao L J, Sun Y, Wan Z, et al. CSP typing of Chinese Aspergillus fumigatus isolates: identification of additional CSP types[J]. Med Mycol, 2013. [41] Mitchell T G, Perfect J R. Cryptococcosis in the era of AIDS--100 years after the discovery of Cryptococcus neoformans[J]. Clin Microbiol Rev, 1995,8(4):515-548. [42] Escandon P, Sanchez A, Martinez M, et al. Molecular epidemiology of clinical and environmental isolates of the Cryptococcus neoformans species complex reveals a high genetic diversity and the presence of the molecular type VGII mating type a in Colombia[J]. FEMS Yeast Res, 2006,6(4):625-635. [43] Jain N, Wickes B L, Keller S M, et al. Molecular epidemiology of clinical Cryptococcus neoformans strains from India[J]. J Clin Microbiol, 2005,43(11):5733-5742. [44] Litvintseva A P, Thakur R, Vilgalys R, et al. Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (serotype A), including a unique population in Botswana[J]. Genetics, 2006,172(4):2223-2238. [45] Illnait-Zaragozi M T, Martinez-Machin G F, Fernandez-Andreu C M, et al. Microsatellite typing of clinical and environmental Cryptococcus neoformans var. grubii isolates from Cuba shows multiple genetic lineages[J]. PLoS One, 2010,5(2):e9124. [46] Pan W, Khayhan K, Hagen F, et al. Resistance of Asian Cryptococcus neoformans serotype A is confined to few microsatellite genotypes[J]. PLoS One, 2012,7(3):e32868. [47] Gillece J D, Schupp J M, Balajee S A, et al. Whole genome sequence analysis of Cryptococcus gattii from the Pacific Northwest reveals unexpected diversity[J]. PLoS One, 2011,6(12):e28550. [48] Feng X, Yao Z, Ren D, et al. Genotype and mating type analysis of Cryptococcus neoformans and Cryptococcus gattii isolates from China that mainly originated from non-HIV-infected patients[J]. FEMS Yeast Res, 2008,8(6):930-938. [49] Chen M, Li X, Wu S, et al. Molecular epidemiology of Cryptococcus neoformans species complex isolates from HIV-positive and HIV-negative patients in southeast China[J]. Frontiers of Medicine in China, 2010,4(1):117-126. [50] Chen J, Varma A, Diaz M R, et al. Cryptococcus neoformans strains and infection in apparently immunocompetent patients, China[J]. Emerg Infect Dis, 2008,14(5):755-762. [51] Igreja R P, Lazera M S, Wanke B, et al. Molecular epidemiology of Cryptococcus neoformans isolates from AIDS patients of the Brazilian city, Rio de Janeiro[J]. Med Mycol, 2004,42(3):229-238. [52] Simwami S P, Khayhan K, Henk D A, et al. Low diversity Cryptococcus neoformans variety grubii multilocus sequence types from Thailand are consistent with an ancestral African origin[J]. PLoS Pathog, 2011,7(4):e1001343. |