[1] Kontoyiannis DP, Bodey GP. Invasive aspergillosis in 2002: an update[J]. Eur J Clin Microbiol Infect Dis, 2002, 21(3): 161-172. [2] Baddley JW, Stroud TP, Salzman D, et al. Invasive mold infections in allogeneic bone marrow transplant recipients[J]. Clin Infect Dis, 2001, 32(9): 1319-1324. [3] Latge JP. Aspergillus fumigatus and aspergillosis[J]. Clin Microbiol Rev, 1999, 12(2): 310-350. [4] Guhad FA, Jensen HE, Aalbaek B, et al. Mitogen-activated protein kinase-defective Candida albicans is avirulent in a novel model of localized murine candidiasis[J]. FEMS Microbiol Lett, 1998, 166(1): 135-139. [5] Bahn YS,Kojima K,Cox GM,et al.Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans [J].Mol Biol Cell,2005,16(5):2285-2300. [6] Yang F, Ma D, Wan Z, et al. The role of sho1 in polarized growth of Aspergillus fumigatus [J]. Mycopathologia, 2011, 172(5): 347-355. [7] Ma Y, Qiao J, Liu W, et al. The Sho1 sensor regulates growth, morphology, and oxidant adaptation in Aspergillus fumigatus but is not essential for development of invasive pulmonary aspergillosis[J]. Infect Immun, 2008, 76(4): 1695-1701. [8] 马彦,乔建军,刘伟,等.烟曲霉pbs2基因功能初步探讨[J]. 中华微生物学和免疫学杂志, 2008, 28(12): 1126-1130. [9] Ma Y, Qiao J, Liu W, et al. The Sho1 sensor regulates growth, morphology, and oxidant adaptation in Aspergillus fumigatus but is not essential for development of invasive pulmonary aspergillosis[J]. Infect Immun, 2008, 76(4): 1695-701. [10] Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts[J]. Microbiol Mol Biol Rev, 2002,66(2): 300-372. [11] Segmüller N, Ellendorf U, Tudzynski B, et al. BcSak1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea [J].Eukaryot Cell, 2007, 6(2):211-221. [12] Park SM, Choi ES, Kim MJ, et al. Characterization of HOG 1 homologue, CpMK 1,from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress[J]. Mol Microbiol,2004, 51(5):1267-1277. [13] Posas F, Saito H. Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator[J]. EMBO J, 1998, 17(5): 1385-1394. [14] van Drogen F, O'Rourke SM, Stucke VM, et al. Phosphorylation of the MEKK Ste11p by the PAK-like kinase Ste20p is required for MAP kinase signaling in vivo [J]. Curr Biol, 2000, 10(11): 630-639. [15] Raitt DC, Posas F, Saito H. Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway[J]. EMBO J, 2000, 19(17): 4623-4631. [16] Posas F, Witten EA, Saito H. Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway[J]. Mol Cell Biol, 1998, 18(10): 5788-5796. [17] Gustin MC, Albertyn J, Alexander M,et al. MAP kinase pathways in the yeast Saccharomyces cerevisiae [J]. Microbiol Mol Biol Rev, 1998,62(4): 1264-1300. [18] Boisnard S, Ruprich-Robert G, Florent M, et al. Role of Sho1p adaptor in the pseudohyphal development, drugs sensitivity, osmotolerance and oxidant stress adaptation in the opportunistic yeast Candida lusitaniae [J]. Yeast, 2008, 25(11): 849-859. [19] Nombela C, Pla J. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans [J]. Mol Cell Biol, 2005, 25(23): 10611-10627. [20] Rodríguez-Peña JM, García R, Nombela C, et al. The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes[J]. Yeast, 2010, 27 (8): 495-502. [21] Serrano R, Martín H, Casamayor A, Ariño J. Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway[J]. J Biol Chem, 2006, 281(52): 39785-39795. |